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Schur’s Theorem in Integer Lattices

Definitions

• For N ∈ N, [N] = {1, 2, . . . ,N}
• For r ∈ N, an r-coloring is a partition of a set into r pairwise

disjoint subsets (color classes).
• A set is monochromatic if it is contained in a single color

class.
• A Schur triple is a solution to a+ b = c .
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Schur’s Theorem in Integer Lattices

Schur’s theorem

Here is a 2-coloring of [4]: {1, 2, 3, 4}.

Notice there are no monochromatic Schur triples. Indeed,

1+ 1 = 2, 1+ 2 = 3, 1+ 3 = 4, 2+ 2 = 4.
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Schur’s Theorem in Integer Lattices

Schur’s theorem

But what about 2-colorings of {1, 2, 3, 4, 5}? It turns that any such
coloring yields a monochromatic Schur triple!

Let’s try to construct a coloring of {1, 2, 3, 4, 5} in red and blue
with no monochromatic Schur triple and come to a contradiction.
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Schur’s theorem

{1,2,3,4,5}
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Schur’s Theorem in Integer Lattices

Schur’s theorem

{1,2,3,4,5}

But what color is left for 3?

1+ 3 = 4, so 3 is not blue.

2+ 3 = 5, so 3 is not red.

This is our contradiction!
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Schur’s theorem

But what about Schur 4-tuples (a+ b + c = d) or Schur
5-tuples (a+ b + c + d = e)?

What if we used three colors (red , green, blue) or four colors
(red , green, blue, orange)?

Schur’s theorem handles Schur tuples of any length and any
number of colors.
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Schur’s Theorem in Integer Lattices

Schur’s theorem

Theorem

Let r , k ∈ N. There exists N ∈ N such that every r -coloring of
{1, 2, . . . ,N} yields a monochromatic Schur k-tuple. In particular,
there is a smallest such N, denoted S(r , k).

Our example was r = 2 (red and blue) and k = 3 (Schur triples,
solutions to a+ b = c). We determined S(2, 3) = 5.
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The Schur numbers

S(3, 3) = 14,S(4, 3) = 45,S(5, 3) = 161

Marjin Heule confirmed the value of S(5, 3) = 161 with a SAT
solver in 2018.

Notice the number of 5-colorings of [161] is 5161. This is far more
than the number of atoms in the observable universe!
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Ramsey’s Theorem (1928)

Theorem

For r , k ∈ N, there exists N ∈ N such that every r -coloring of the
edges of a complete graph on N vertices yields a monochromatic
complete subgraph on k vertices. In particular, there is a smallest
such N denoted Rr (k).
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Schur’s Theorem in Integer Lattices

Schur’s Theorem in higher dimensions

Can Schur’s theorem be generalized to integer lattices?

We call x1, ..., xk ∈ Nd a Schur k-tuple if x1 + · · ·+ xk−1 = xk .

With this definition, the problem boils down to the 1-dimensional
case: the smallest N such that [N]d is guaranteed to contain a
monochromatic Schur k-tuple is S(r , k).
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Schur’s Theorem in Integer Lattices

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure: A 3-coloring of [13]2 with no monochromatic Schur triple:
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Schur’s Theorem in Integer Lattices

For d , r , k ∈ N, any r -coloring of [S(r , k)]d admits a
monochromatic Schur k-tuple on the diagonal
{(x , . . . , x) : x ∈ [S(r , k)]}.

16 / 24
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Main Theorem

Luckily, a linear independence condition makes the problem more
interesting!

Let k , d ∈ N with k ≤ d + 1. We call x1, ..., xk ∈ Nd a
nondegenerate Schur k-tuple if x1, . . . , xk−1 are linearly
independent and x1 + · · ·+ xk−1 = xk .

Theorem

Let r , d ∈ N. There exists N ∈ N such that every r -coloring of
[N]d yields a monochromatic nondegenerate Schur (d + 1)-tuple.
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Schur’s Theorem in Integer Lattices

Proof of main theorem

Fix an r-coloring of the lattice [Rr (d + 1)d − 1]d

For 1 ≤ i ≤ Rr (d + 1), let yi = (i , i2, . . . , id).

We view the yi ’s as the vertices of a complete graph whose edges
are given by the differences yj − yi for 1 ≤ i < j ≤ Rr (d + 1).

We give each each edge yi − yj the color of yi − yj in the r -coloring
of [Rr (d + 1)d − 1]d .
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Proof of main theorem (continued)

This is an r -coloring of a complete graph on Rr (d + 1) vertices, so
we apply Ramsey’s theorem!

By definition of Rr (d + 1), there exist yi1 , . . . , yid+1 with
i1 < . . . < id+1 which induce a monochromatic complete subgraph.

Translating this back to the lattice coloring, we observe yij+1 − yij
for 1 ≤ j ≤ d and yid+1 − yi1 are all the same color. Further, they
satisfy

(yi2 − yi1) + (yi3 − yi2) + · · ·+ (yid+1 − yid ) = yid+1 − yi1 .
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Proof of main theorem (continued)

In addition, {yi2 − yi1 , . . . , yid+1 − yid} are linearly independent.

Indeed, the following matrix has non-zero determinant:

A =


i2 − i1 i22 − i21 . . . id2 − id1
i3 − i2 i23 − i22 . . . id3 − id2

...
...

. . .
...

id+1 − id i2d+1 − i2d . . . idd+1 − idd

 .
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Schur’s Theorem in Integer Lattices

The determinant can be easily obtained by applying determinant
preserving row operations to the (d + 1)× (d + 1) Vandermonde
matrix

V =


1 i1 i21 . . . id1
1 i2 i22 . . . id2
...

...
...

. . .
...

1 id+1 i2d+1 . . . idd+1

 ,

resulting in
1 i1 i21 . . . id1
0 i2 − i1 i22 − i21 . . . id2 − id1
0 i3 − i2 i23 − i22 . . . id3 − id2
...

...
...

. . .
...

0 id+1 − id i2d+1 − i2d . . . idd+1 − idd

 .
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Figure: A 2-coloring of [6]2 with no monochromatic nondegenerate Schur
triples.
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Figure: A 3-coloring of [17]2 with no monochromatic nondegenerate
Schur triples.
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Figure: A 4-coloring of [48]2 with no monochromatic nondegenerate
Schur triples.
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