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1. Introduction

The mathematical community has studied Ramsey theory, additive combinatorics, and
closely related ancestors for over a century [15], [16]. These subjects are so rich that they
have attracted the attention of notable mathematicians including Paul Erdős and Terence
Tao.

Roughly speaking, Ramsey theory is the study of patterns in sets that are indestructible
under finite partition. For instance, consider the set {1, 2, 3, 4, 5}. One may notice that it
admits several solutions to the equation a + b = c, say 1 + 1 = 2 or 1 + 2 = 3. Assign each
element to one of the colors red or blue (this is a “finite partition”). One can check that no
matter how we choose the coloring, there will be either a red solution to a+ b = c or a blue
solution to a+ b = c. As such, the solutions to a+ b = c are “indestructible” under colorings
of {1, 2, 3, 4, 5} in red and blue. This is the simplest nontrivial case of Schur’s theorem [2].

Questions like these gave birth to a branch of additive combinatorics concerning patterns
which must be contained in sufficiently dense subsets of N = {1, 2, 3, . . .}. By a sufficiently
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dense subset of N, we mean a set containing a positive proportion of N, in the appropriate
sense. For example, we will prove that a sufficiently dense subset of N must contain a 3-term
arithmetic progression (3AP), which consists of 3 distinct numbers that are evenly spaced
apart (e.g., {1, 2, 3} or {4, 9, 14} or {12, 14, 16}). This is an informal way of stating Roth’s
theorem [7].

We introduce some of the core results of Ramsey Theory: Schur’s theorem [2], Rado’s
theorem [12], Ramsey’s theorem [3], and Van Der Waerden’s theorem [14]. We present an
original extension of Schur’s theorem in higher dimensions [13], and we provide a framework
for finding exact answers to Ramsey type problems via SAT solver, a powerful computational
tool [13],[1]. In addition, we include original SAT computations and examples related to
Schur’s theorem in higher dimensions.

We also explore some of the foundational ideas of additive combinatorics, starting with a
formal statement of Szemerédi’s theorem [8],[9]. We then provide a proof of Roth’s theorem
for a general linear equation [7] via the Hardy-Littlewood circle method, which includes ex-
plicit dependence on the coefficients of the linear equation which has not previously appeared
in the literature. We also cite recent papers which give improved bounds and extensions of
Roth’s theorem.

Finally, we introduce the transference principle as it relates to density problems like the
Green-Tao theorem [11],[10] and coloring problems like the Pythagorean triples conjecture
[5]. We include proofs of several elementary propositions related to transference which, to
our knowledge, have not previously appeared.

2. Preliminary definitions

In order to discuss Ramsey theory, we must first introduce several definitions.

Definition 1. For r ∈ N and a set A, an assignment of each element of A to one of r color
classes is called an r-coloring of A. More formally, this is a map ∆ : A→ {1, 2, . . . , r}.

Definition 2. Let A be a set. Given an r-coloring of A, a subset of A is calledmonochromatic
if it is contained within a single color class.

Definition 3. If F is a set of subsets of A, we call F a family. The elements of F are called
members of F .

Definition 4. For N ∈ N, let [N ] = {1, 2, . . . , N}.

Given a set A and a family F of subsets of A, we might ask the following question.
Does every r-coloring of A contain a monochromatic member of F? Many problems in
Ramsey theory are of this form. Sometimes it is useful to state these theorems in terms of
partition regularity.

Definition 5. Let F be a family of finite subsets of N. We say that F r-partition regular if
every r-coloring of N yields a monochromatic member of F .

Definition 6. We call a family F partition regular if F is r-partition regular for every r ∈ N.
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For a family F of finite subsets of N, One may check that the following two statements
are equivalent

(1) F is partition regular.

(2) For every r ∈ N, there exists an N ∈ N such that every r-coloring of [N ] yields a
monochromatic member of F .

We often state a theorem concisely in terms of (1) but prove it by showing (2).

3. Ramsey’s theorem

Our goal in section 4 is to prove Schur’s theorem, but our argument will rely on Ramsey’s
theorem, which is a generalization of what is often referred to as the party problem. How
many people must attend a party in order to guarantee there are three party goers each of
whom knows the other two or three party goers each of whom does not know the other two?

We may translate this scenario into a 2-coloring of the edges of a complete graph, which
is a collection of vertices where each pair of vertices is connected by an edge. Each vertex
represents a party goer and the edge between each pair of vertices is blue when the two know
each other and red otherwise. The problem at this point is to find how many vertices the
complete graph must have in order to guarantee that any 2-coloring yields a red triangle or
a blue triangle. It turns out the answer is 6. We encourage the reader to prove this as an
exercise (hint: Consider a 2-coloring of K6 in red and blue. For a given vertex u, at least 3
of its incident edges must be the same color by the pigeonhole principle).

We prove Ramsey’s theorem in its general form below. Recall that for each n ∈ N, Kn

denotes the complete graph on n vertices.

Theorem 1 (Ramsey’s theorem). Suppose r, w1, ..., wr ∈ N. Then, there exists N ∈ N such
that every r-coloring of KN yields a monochromatic Kwi in color i for some 1 ≤ i ≤ r. In
particular, there is a smallest such N , denoted by Rr(w1, ..., wr).

Proof. Fix r ∈ N. We proceed by induction on the sum w1 + · · ·+ wr.

The base case is
w1 + · · ·+ wr = r,

which is achieved only when w1 = · · · = wr = 1. But Rr(1, ..., 1) = 1, so this case is handled.

For the inductive hypothesis, fix t ∈ N, and assumeRr(w1, ..., wr) exists for every w1, ..., wr ∈
N satisfying w1 + · · ·+ wr = t.

Suppose w1, ..., wr ∈ N and w1 + · · · + wr = t + 1. By the inductive hypothesis, we know
Rr(w1, ..., wi − 1, ..., wr) exists for each 1 ≤ i ≤ r. Thus, we may take

M = max{Rr(w1 − 1, ..., wr), Rr(w1, w2 − 1, ..., wr), ..., Rr(w1, ..., wr − 1)}.

Set N = r(M − 1) + 2. We claim any r-coloring of KN yields a monochromatic Kwi in color
i for some 1 ≤ i ≤ r.

Fix an r-coloring of KN , and fix a vertex v. There are N − 1 edges connecting v to the
other N − 1 vertices, and each of these edges falls under one of r color categories. By the
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pigeonhole principle, there exist⌈
N − 1

r

⌉
=

⌈
r(M − 1) + 1

r

⌉
=

⌈
M − 1 +

1

r

⌉
= M.

of these edges which are the same color, say color i. These M edges connect v toM vertices.
Consider the complete subgraph induced by these M vertices. Call this subgraph G.

Observe thatM ≥ Rr(w1, ..., wi−1, ..., wr). Thus, either G yields a monochromatic Kwj in
color j for some j 6= i or G yields a monochromatic Kwi−1 in color i. In the former case, we
are done, and in the latter case, the complete subgraph formed by v and the monochromatic
Kwi−1 in color i is a monochromatic Kwi in color i. Therefore, N satisfies the desired
condition. Thus, Rr(w1, ..., wr) exists and is at most N .

�

4. Schur’s theorem and related results

Earlier we introduced the simplest nontrivial case of Schur’s theorem. In particular, we
claimed the family of solutions to a+ b = c is 2-partition regular. But what about solutions
to a + b + c = d or a + b + c + d = e? And what if we consider 3-colorings or 4-colorings
of N? It turns out Schur’s theorem accounts for every family of equations of this form and
every number of colors. We will prove this using Ramsey’s theorem.

Definition 7. We call {x1, . . . , xk} ∈ N a Schur k-tuple if x1 + · · ·+ xk−1 = xk.

Definition 8. For r, k ∈ N, let Rr(k) = Rr(k, . . . , k).

Theorem 2 (Schur’s theorem). For every k ∈ N, the family of Schur k-tuples is partition
regular.

Proof. Take k, r ∈ N, and set N = Rr(k) − 1. Fix an r-coloring ∆ of [N ]. We claim ∆
admits a monochromatic Schur k-tuple.

Construct an r-coloring of KN+1 as follows: denote the vertices of the graph by x1, ..., xN .
For every 1 ≤ i, j ≤ N , set ∆(|i− j|) as the color the edge between xi and xj. By Ramsey’s
Theorem, we know this r-coloring of KN+1 induces a monochromatic Kk. Say the vertices
of this subgraph are xy1 , ..., xyk , where y1 < y2 < · · · < yk. Transferring this configuration
to ∆, we see (y2 − y1), (y3 − y2), ..., (yk − yk−1), (yk − y1) is a monochromatic Schur k-tuple.
Indeed, these all lie in the same color category by construction, and

(y2 − y1) + (y3 − y2) + ...+ (yk − yk−1) = yk − y1,

where the sum on the left-hand side telescopes to the right-hand side.

�

Schur’s theorem allows us to define Schur numbers:
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Definition 9. For r, k ∈ N, let S(r, k) be the smallest natural number for which every
r-coloring of [S(r, k)] yields a monochromatic Schur k-tuple.

After seeing Schur’s theorem, one might wonder whether it can be generalized to higher
dimensional integer lattices. The natural approach is to define Schur k-tuples of points in
Nd in the following way, via component by component vector addition.

Definition 10. Let d ∈ N. We call x1, . . . , xk ∈ Nd a Schur k-tuple if x1 + · · ·+ xk−1 = xk.

However, with this definition, an extension of Schur’s theorem is immediate and trivial.

Theorem 3. Let d, r, k ∈ N. Then there exists an N ∈ N such that every r-coloring of [N ]d

yields a monochromatic Schur k-tuple. In fact, S(r, k) is the smallest such N .

Proof. Let N = S(r, k). Fix an r-coloring of [N ]d, and consider the main diagonal of [N ]d:

D = {(x, . . . , x) ∈ [N ]d}.

We have an induced r-coloring of D, which contains N = S(r, k) elements. This r-coloring
of D corresponds to an r-coloring of [N ]. By Schur’s theorem, this r-coloring of [N ] yields
a monochromatic Schur k-tuple satisfying x1 + · · · + xk−1 = xk. Then the r-coloring of D
yields a monochromatic schur k-tuple as well.

(x1, . . . , x1) + · · ·+ (xk−1, . . . , xk−1) = (xk, . . . , xk).

On the other hand, suppose N < S(r, k). Then, there is an r-coloring ∆ of [N ] with no
monochromatic Schur k-tuple. Construct an r-coloring of [N ]d in the following way. For
every l ∈ [N ], let ∆(l) be the color every point in [N ]d with first coordinate l. Then, this
coloring of [N ]d yields no monochromatic Schur k-tuple in the first coordinate, so it yields
no monochromatic Schur k-tuple in [N ]d. �

Thus, we have a theorem which is equivalent to Schur’s theorem in N. However, we may
add a linear independence condition to make the problem more interesting.

Definition 11. Let d ∈ N. We call x1, . . . , xk ∈ Nd a nondegenerate Schur k-tuple if
x1 + · · ·+ xk−1 = xk and x1, . . . , xk−1 are linearly independent.

Observe that the linear independence condition prevents the case where Schur tuple lies
on the main diagonal. With this definition, the problem is tougher to tackle. This is one of
the major original results of this thesis [13].

Theorem 4 (Schur’s theorem in integer lattices). Let r, d ∈ N. There exists N ∈ N such
that every r-coloring of [N ]d yields a monochromatic nondegenerate Schur (d+ 1)-tuple.

Proof. Let N = Rr(d+1)d+1, and consider an r-coloring ∆ of [N ]d. For each i in [N ], define
yi = (i, i2, ..., id). Construct a colored KN with vertices y1, ..., yN in the following way: for
every i > j, set ∆(yi−yj) as the color of the edge connecting yi and yj. This is an r-coloring
of a complete graph on N = Rr(l) vertices, so it must yield a monochromatic Kd+1. Say the
vertices of this monochromatic Kd+1 are yx1 , ..., yxd+1

, where x1 < · · · < xd+1.
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We claim
V =

{
yxi+1

− yxi : i ∈ N, 1 ≤ i ≤ d
}
∪ {yxd+1

− yx1}.
is a monochromatic nondegenerate Schur k-tuple induced by ∆. Indeed, V is monochromatic
by construction, and

(yx2 − yx1) + (yx3 − yx2) + · · ·+ (yxd+1
− yxd) = yxd+1

− yx1 .
In addition, V is linearly independent. Indeed, let a1, a2, ..., ad be scalars and suppose

x2 − x1 x22 − x21 . . . xd2 − xd1
x3 − x2 x23 − x22 . . . xd3 − xd2

...
... . . . ...

xd+1 − xd x2d+1 − x2d . . . xdd+1 − xdd



a1
a2
...
ad

 =


0
0
...
0

 .
By taking the product above, we obtain

∑d+1
j=1

(
xj2 − x

j
1

)
aj∑d+1

j=1

(
xj3 − x

j
2

)
aj

...∑d+1
j=1

(
xjd+1 − x

j
d

)
aj

 =


0
0
...
0

 .
By setting

p(x) = a1x+ a2x
2 + · · ·+ adx

d,

this becomes 
p(x2)− p(x1)
p(x3)− p(x2)

...
p(xd+1)− p(xd)

 =


0
0
...
0

 .
Hence,

p(x2) = p(x1)

p(x3) = p(x2)

...
p(xd+1) = p(xd),

so
r = p(x1) = p(x2) = p(x3) = · · · p(xd+1),

for some constant r. Therefore, p achieves the same value at d+ 1 distinct points. However,
the degree of p is at most d. Thus, by the fundamental theorem of algebra, p(x) = 0, so

a1 = a2 = · · · = ad = 0,

and the linear independence requirement is satisfied.

�

It is important to introduce Rado’s theorem as it is a powerful generalization of Schur’s
theorem. Rewrite the Schur equation a + b = c as a + b − c = 0. A subset {−1, 1} of the
coefficients of this linear equation sums to 0. It turns out that this condition is enough to
guarantee partition regularity.

6



Theorem 5 (Rado). Suppose r ∈ N,c1, . . . , ck ∈ Z and there is some subset of {c1, . . . , ck}
that sums to 0. Then there is an N ∈ N such that every r-coloring [N ] yields a monochro-
matic solution to c1x1 + · · ·+ ckxk = 0.

We must also mention Van der Waerden’s theorem here, as it is a direct predecessor of
Szemerédi’s theorem, which will be the focus of our discussion on additive combinatorics.

Theorem 6 (Van der Waerden’s theorem). For every k ∈ N, the family of kAPs is partition
regular.

Notice that Rado’s theorem implies Van der Waerden’s theorm for k = 3. Indeed, a 3AP
solution to the equation x+ z − 2y = 0.

5. SAT computations

Given a family F , we might have a clever way to prove that if a set A is large enough,
then every r-coloring A yields a monochromatic member of F , but determining exactly how
large A must be usually requires immense comptutational power, and for this reason only a
few of these values are known. The most powerful tool for finding these answers is a SAT
solver.

In 2018, Marjin Heule conducted a multi-cpu year SAT computation [4] to determine
S(5, 3). In particular, he showed that for n = 161, every 5-coloring of [n] yields a monochro-
matic solution to a + b = c, and he provided a counterexample to show this is not true
for n = 160. To illustrate the magnitude of this computation, consider the fact that there
are 5161 5-colorings of [161]. This is far more than the number of atoms in the observable
universe.

In a similar way, Heule [5] was able to show the family of Pythagorean triples (e.g., {3, 4, 5}
and {5, 12, 13}) is 2-partition regular by conducting a SAT computation to determine that
every 2 coloring of [7825] yields a monochromatic Pythagorean triple. It is conjectured that
the Pythagorean triples are partition regular.

Now we describe the general structure of the SAT expressions used to solve these problems.
Consider a family F and an r-coloring of a finite set A given by

∆ : A→ {1, 2, ..., r}.

Following the lead of Boza, Marín, Revuelta, and Sanz [1], write a logical expression in
conjunctive normal form (cnf) which is true if and only if ∆ yields no monochromatic member
of F . For each p ∈ A and each s ∈ {1, 2, ..., r − 1}, define a boolean variable φs(p) by

φs(p) =

{
True if ∆(p) = s

False otherwise
.

(Note that ∆(p) = r when φ1(p), φ2(p), ..., φr−1(p) are all false). In order to guarantee ∆
assigns exactly one color to each point, our cnf expression must include

D =
∧
p∈A

∧
i<j≤r−1

(
¬φi(p) ∨ ¬φj(p)

)
.
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Observe that ∆ yields no monochromatic member of F if and only if for each m ∈ F and
for each color i ∈ {1, 2, ..., r}, ∆ assigns at least one element of m to a color besides i. Thus,
for each m ∈ F we include the expression

Cm =

 ∧
i∈[r−1]

(∨
p∈m

¬φi(pj)

) ∧
 ∨
i∈[r−1]

∨
p∈m

φi(pj)

 .

Set
C =

∧
m∈F

Cm.

Then, ∆ induces a coloring with no monochromatic member of F if and only if D∧C. When
given this expression, a SAT solver will return “unsatisfiable”, or it will print a satisfying
assignment of the variables corresponding to an r-coloring with no monochromatic member
of F . Using a SAT solver, we computed several higher dimensional Schur numbers.

Definition 12. Let r, d, k ∈ N. Define Sdr (k) to be the smallest natural number such that
every r-coloring of [Sdr (k)]d yields a monochromatic nondegenerate Schur k-tuple.

We determined S2
2(3) = 6, S2

3(3) = 18, and S2
4(3) ≥ 49. The counterexamples are displayed

in the following figures.

Figure 1. A 2-coloring of [6]2 with no monochromatic nondegenerate Schur triples.

Figure 2. A 3-coloring of [17]2 with no monochromatic nondegenerate Schur triples.
8



Figure 3. A 4-coloring of [48]2 with no monochromatic nondegenerate Schur triples.

6. Additive combinatorics

In additive combinatorics, we might ask the following question. Given a family F in N,
does a sufficiently dense subset of N necessarily contain a member of F? Of course, it is
important to clarify what we mean by “sufficiently dense”.

Definition 1. The density of A ⊂ N is given by

δ(A) = lim
N→∞

|A ∩ [N ]|
N

,

if this limit exists.

Informally, we may think of density as the probability a given natural number lies in A.
For instance, the even natural numbers have density 1/2 while the multiples of three have
density 1/3.

We defined density as the limit of a sequence, but sequences do not always converge. For
this reason, we define the upper density of a set A:

Definition 2. The upper density of A ⊆ N is given by

δ(A) = lim sup
N→∞

|A ∩ [N ]|
N

.

Note that δ always exists since the terms of the sequence are bounded between 0 and 1.
Then, instead of saying a A is “sufficiently dense”, we say A has positive upper density.

In order to more clearly state the theorems in additive combinatorics, we introduce another
definition.

Definition 3. Let F be a family in N. We call F density regular if for every A ⊂ N
δ(A) > 0 =⇒ A contains a member of F .
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The terms in the sequence of definition 1 are nonnegative, so δ(A) ≥ 0. Thus, if δ(A) 6> 0,
then δ(A) = 0. With this in mind, we write the contrapositve of definition 3.

Definition 3. (contrapositive) Let F be a family in N. We call F density regular if for
every A ⊂ N ,

A is F -free =⇒ δ(A) = 0.

We call a set F -free if it contains no member of F . It is sometimes easier to prove theorems
using this version of the definition.

7. Roth’s theorem for a general linear equation

Szemerédi’s theorem is a strengthening of van der Waerden’s theorem and one of the
foundational result of additive combinatorics.

Theorem 1 (Szemerédi’s theorem). For every k ∈ N, the family of kAP’s is density regular.

Proving Szemerédi’s theorem [8], [9] in its entirety is enormously difficult and far beyond
the scope of this paper, but we can handle the case k = 3, known as Roth’s theorem [7].
Notice that if x < y < z form a 3AP, then x + y − 2z = 0. This is a linear equation whose
coefficients sum to 0. It turns if c1 + · · ·+ ck = 0, then the family of solutions to the linear
equation c1x1 + · · ·+ ckxk = 0 is density regular. Note that this is a stronger condition than
the one in Rado’s theorem, which only requires that a subset of the coefficients sums to zero.

In order to prove Roth’s theorem for a general linear equation, we adapt the traditional
density increment argument. The fact that this adaptation is possible has been known in the
mathematical community, but we write it out in careful detail, and we come to a quantitive
bound with a multiplicative constant that is explicitly determined by the coefficients of the
linear equation. We will rely on several Fourier analytic tools. The first of these is the
orthogonality relation.

Proposition 1 (Orthogonality relation).∫ 1

0

e2πinαdα =

{
1 if n = 0,

0 if n ∈ Z \ {0}.

Proof. Let n ∈ Z. If n = 0, then∫ 1

0

e2πinαdα =

∫ 1

0

e0dα = 1.

Otherwise, n 6= 0, and∫ 1

0

e2πinαdα =
1

2πin

(
e2πin·1 − e2πin·0

)
=

1

2πin
(1− 1) = 0,

where we also used the fact that n ∈ Z and e2πin = 1. �

We will use this to detect and count solutions to a given linear equation, but first we need
to define the Fourier transform.

Definition 4. Let T be R/Z, the circle parametrized by [0, 1] with 0 and 1 identified.
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Definition 5. Suppose F : Z→ C satisfies F (n) = 0 for all but finitely many n. Then, the
fourier transform of F is F̂ : T→ C, defined by

F̂ (α) =
∑
n∈Z

F (n)e−2πinα.

Definition 6. For A ⊂ Z, define 1A : Z→ {0, 1} by

1A(n) =

{
1 if n ∈ A
0 if n 6∈ A

.

We are ready to state the proposition which allows us to count solutions to

c1x1 + · · · ckxk = 0

via the orthogonality relation. Note that for a finite set S, we take |S| to mean the number
of elements in S.

Proposition 2. Let A1, . . . Ak be finite subsets of N, and let c1, . . . , ck ∈ Z. Then,

|{(x1, . . . , xk) ∈ A1 × · · · × Ak : c1x1 + · · · ckxk = 0}| =
∫ 1

0

1̂A(c1α) · · · 1̂A(ckα)dα.

Proof. By the definition of the Fourier transform,∫ 1

0

1̂A(c1α) · · · 1̂A(ckα)dα =

∫ 1

0

∑
x1∈A1

e−2πic1x1α · · ·
∑
xk∈Ak

e−2πickxkαdα.

We may rewrite the product of sums in the integrand as follows.∫ 1

0

∑
x1∈A1

e−2πic1x1α · · ·
∑
xk∈Ak

e−2πickxkαdα =

∫ 1

0

∑
(x1,...,xk)∈A1×···×Ak

e−2πi(c1x1+···+ckxk)αdα.

Next, we apply the integral sum property to obtain∫ 1

0

∑
(x1,...,xk)∈A1×···×Ak

e−2πi(c1x1+···+ckxk)αdα =
∑

(x1,...,xk)∈A1×···×Ak

∫ 1

0

e−2πi(c1x1+···+ckxk)αdα,

and we use the orthogonality relation to conclude∑
(x1,...,xk)∈A1×···×Ak

∫ 1

0

e−2πi(c1x1+···+ckxk)αdα

=
∑

(x1,...,xk)∈A1×···×Ak

{
1 if c1x1 + · · ·+ ckxk = 0

0 else

=|{(x1, . . . , xk) ∈ A1 × · · · × Ak : c1x1 + · · · ckxk = 0}|.

�
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Now we have the Fourier analytic tools necessary to approach Roth’s theorem. Suppose
the coefficients of a linear equation are c1, ..., ck ∈ Z, where c1 + · · ·+ ck = 0. Let

F = {{x1, · · · , xk} ⊂ Z : c1x1 + · · ·+ ckxk = 0 and xi 6= x1 for some i}.
We will come to an upper bound on the density of F -free subsets of N which depends
explicitly on the coefficients c1, . . . , ck. In order to clearly state this dependence, we define
the following parameters.

Without loss of generality, order c1, . . . , ck so c1, ..., cj < 0 and cj+1, ..., ck ≥ 0. Set

(1)

J = |c1 + · · ·+ cj|
K = cj+1 + · · ·+ ck−1

β =
K

J

(
1− K

J

)
, and

γ = 1− K

J
,

Finally, define

(2) r(c1, . . . , ck) =
(γ − β)k−1

ck−2k 2k
.

Theorem 2 (Roth’s Theorem for a general linear equation). Define F as above. If N ∈ N
and A ⊂ [N ] is F-free, then

|A| ≤ 16N

r log logN
,

where r = r(c1, . . . , ck), as in equation (2).

Our density increment argument can be summarized in the following 4 steps.

Step 1: (Fourier peak). Define the balanced function of A ⊂ [N ] by

fA = 1A − δ1[N ].

We show that if the density of A satisfies several mild conditions and A contains no member
of F , then f̂A(α), the Fourier transform of the balanced function of A, must be large for
some α ∈ T.
Step 2: (Density increment). Suppose fA achieves a Fourier peak as in step 1. In a certain
sense this means A has a nonuniform distribution in [N ]. Consequently, we may show that
if A has density δ in [N ], then A has density δ + ε/8 in an arithmetic progression P ⊂ [N ],
where ε is a positive constant determined by the Fourier peak.

Step 3: (Translate and scale). Suppose A ⊂ [N ] is F -free and has density δ + ε/8 in an
arithmetic progression P ⊂ [N ]. Since F is invariant under scaling and translation, we may
translate and scale P to [N ′] and A∩P to A′ ⊂ [N ′] in such a way that A′ is F -free and has
density δ + ε/8 in [N ′].

Step 4: (Repeat). Given an A ⊂ [N ] which is F -free, we apply steps 1 through 3 to obtain
an incrementally denser A1 ⊂ [N1] where A1 is F -free and N1 < N . Repeat steps 1 through
3 again to obtain an even denser F -free A2 ⊂ [N2] where A2 is F -free and N2 < N1. We
repeat this process for as long as possible. However, we cannot continue forever, or else we
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would come to some Ak ⊂ [Nk] with density greater than 1, which is impossible. Based on
the fact that this process must end, we extract an upper bound on the density of A.

Our summary hides many details and exceptions. This will become clear as we work
through the proof.

Lemma 1 (Fourier peak). Let N ∈ N, and let A ⊂ [N ] be F-free with |A| = δN . If

δ ≥
(
rNk−2)−1/(k−1) and |A ∩ (βN, γN ]| ≥ (γ − β)|A|

2
,

then
|f̂A(α)| ≥ rδ2N,

for some α ∈ [0, 1).

Proof. Let N ∈ N and suppose A ⊂ [N ] is F -free. Suppose further

|A ∩ (βN, γN ])| ≥ (γ − β)|A|
2

.

Let x ∈ R. Then
c1x+ c2x+ · · ·+ ckx = x(c1 + · · ·+ ck) = 0.

It follows that {(x, x, ..., x) ∈ Nk} is a set of trivial solutions to c1x1 + · · · + ckxk = 0.
Combining this with the fact that A is F -free, we see the only solutions to c1x1+· · ·+ckxk = 0
in A are the trivial solutions, of which there are |A| = δN . Hence,

δN = |{(x1, · · · , xk) ∈ Ak : c1x1 + · · ·+ ckxk = 0}|.
Thus,

δN =

∫ 1

0

1̂A(c1α) · · · 1̂A(ckα)dα,

by proposition 2.

Let fA be the balanced function of A, defined by

fA = 1A − δ1[N ].

Therefore,

δN =

∫ 1

0

1̂A(c1α) · · · 1̂A(ck−1α)
(
f̂A(ckα) + δ1̂[N ](ckα

)
)dα

=

∫ 1

0

1̂A(c1α) · · · 1̂A(ck−1α)f̂A(ckα)dα

+ δ

∫ 1

0

1̂A(c1α) · · · 1̂A(ck−1α)1̂[N ](ckα)dα.

Apply proposition 2 once again to obtain∫ 1

0

1̂A(c1α)1̂A(c2α) · · · 1̂[N ](ckα)dα

=|{(x1, ..., xk) : {x1, ..., xk−1} ⊂ A, xk ∈ [N ], c1x1 + · · ·+ ckxk = 0}|.
Let

B = {(x1, ..., xk) : {x1, ..., xk−1} ⊂ A, xk ∈ [N ], c1x1 + · · ·+ ckxk = 0}.
13



We have shown

(3) δN =

∫ 1

0

1̂A(c1α) · · · 1̂A(ck−1α)f̂A(ckα)dα + δ|B|.

Let {x1, . . . , xk−1} ⊂ A ∩ (βN, γN), x1 ≡ · · · ≡ xk−1 (mod ck), and

xk = −c1x1 + · · ·+ ck−1xk−1
ck

.

We claim xk ∈ [N ]. By (1),

KNβ − JNγ < c1x1 + · · ·+ ck−1xk−1 < KNγ − JNβ.
Since γ = 1−K/J and Kβ ≥ 0,

Kβ − Jγ = Kβ +K − J ≥ K − J.
and it is not hard to check that

Kγ − Jβ < 0.

Combining these facts gives

(4) (K − J)N ≤ c1x1 + · · ·+ ck−1xk−1 < 0.

We know
xk = −c1x1 + · · ·+ ck−1xk−1

ck
and K − J = −ck. Thus, (4) becomes 0 < xk ≤ N. In addition

c1x1 + · · ·+ ck−1xk−1 ≡ x1(c1 + · · · ck−1) ≡ −x1ck ≡ 0 (mod ck),

so xk is an integer. In particular, xk ∈ [N ].

Set

C = {(x1, ..., xk−1) : {x1, ..., xk−1} ⊂ A ∩ (βN, γN), x1 ≡ · · · ≡ xk−1 (mod ck)}.
By the work done above,

(5) |C| ≤ |B|.
For each i ∈ [ck], set

pi =
|{x ∈ A ∩ (βN, γN) : x ≡ i (mod ck)}|

|A ∩ (βN, γN)|
and

p = |C|/|A ∩ (βN, γN)|k−1.
Then

p = pk−10 + · · ·+ pk−1ck−1.

Observe p0 + · · ·+ pck−1 = 1, so p is minimized when

p0 = · · · = pck−1 = 1/ck.

Hence,
p ≥ ck(1/c

k−1
k ) = 1/ck−2k .

Recall
|A ∩ (βN, γN)| ≥ (γ − β)|A|

2
.
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Combining this with (5) gives

|B| ≥ |C|
= p|A ∩ (βN, γN)|k−1

≥ |A ∩ (βN, γN)|k−1

ck−2k

.

=
(γ − β)|A|
2k−1ck−2k

= 2r|A|k−1.
In particular,

|B| ≥ 2r|A|k−1 = 2rδk−1Nk−1.

By applying (3) and triangle inequality, we observe∫ 1

0

|1̂A(c1α)| · · · |1̂A(ck−1α)||f̂A(ckα)|dα ≥
∣∣∣∣∫ 1

0

1̂A(c1α) · · · 1̂A(ck−1α)f̂A(ckα)dα

∣∣∣∣
≥ 2rδkNk−1 − δN

≥ δk
(

2rNk−1 − N

δk−1

)
≥ rδkNk−1,

where we accounted for the fact that δ ≥
(
rNk−2)−1/(k−1) and

|1̂A(α)| ≤ δN ∀α ∈ T.
Thus,

rδkNk−1 ≤
∫ 1

0

|1̂A(c1α)| · · · |1̂A(ck−1α)||f̂A(ckα)|dα

≤
∫ 1

0

(δN)k−3|1̂A(c1α)||1̂A(c2α)|max
α∈T
|f̂A(α)|dα

= max
α∈T
|f̂A(α)| · δk−3Nk−3

∫ 1

0

|1̂A(c1α)||1̂A(c2α)|dα.

By the Cauchy-Schwartz inequality,

max
α∈T
|f̂A(α)| · δk−3Nk−3

∫ 1

0

|1̂A(c1α)||1̂A(c2α)|dα

≤max
α∈T
|f̂A(α)| · δk−3Nk−3

(∫ 1

0

|1̂A(c1α)|2dα
)1/2(∫ 1

0

|1̂A(c2α)|2dα
)1/2

.

By Plancherel’s identity,

max
α∈T
|f̂A(α)| · δk−3Nk−3

(∫ 1

0

|1̂A(c1α)|2dα
)1/2(∫ 1

0

|1̂A(c2α)|2dα
)1/2

= max
α∈T
|f̂A(α)| · δk−3Nk−3(δN)1/2(δN)1/2
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= max
α∈T
|f̂A(α)| · δk−2Nk−2.

In particular,
rδkNk−1 ≤ max

α∈T
|f̂A(α)| · δk−2Nk−2.

Dividing through by δk−2Nk−2 gives

max
α∈T
|f̂A(α)| ≥ rδ2N.

�

Lemma 2 (Density increment). Let N ∈ N, and let A ⊂ [N ] be F-free with |A| = δN . If
|f̂A(α)| ≥ εN for some α ∈ T, then there exists an arithmetic progression P ⊂ [N ] of length
L = b(εN)1/2 /16c satisfying |A ∩ P | ≥ L(δ + ε/8).

Proof. Let N ∈ N and suppose A ⊂ [N ], |A| = δN and ε > 0. Suppose further

(6) |f̂A(α)| ≥ εN.

for some α ∈ T, and let
L = b(εN)1/2/16c.

By the Dirichlet approximation theorem, there exists q ∈ N, q ≤ 16L such that

||qα||T ≤ 1/(16L),

where ||qα||T is the distance between qα and the nearest integer. Set P0 = {−lq : 1 ≤ l ≤ L}.
Let ` ∈ N. By the triangle inequality,

|e2πi`qα| ≥ 1− |1− e2πi`qα|.
It follows that

|1̂P0(α)| =
L∑
`=1

|e2πi`qα|

≥ L−
L∑
`=1

|1− e2πi`qα|.

For any t ∈ R, we see
|1− e2πit| ≤ 2π||t||T,

by comparing straight line distance to arclength around the circle. Thus,

L−
L∑
`=1

|1− e2πi`qα| ≥ L− 2π
L∑
`=1

`||qα||T.

Now we use the fact that ||qα||T ≤ 1/(16L) along with the formula
∑L

`=1 ` = L(L+1)
2

:

L− 2π
L∑
`=1

`||qα||T ≥ L− π(L+ 1)

16
≥ L− πL

8
≥ L− L

2
=
L

2
.

Putting these facts together gives the following estimate.

(7) |1̂P0(α)| ≥ L/2.
16



Next, we take the convolution of fA and 1P0 , defined by

fA ∗ 1P0(n) =
∑
m∈Z

fa(m)1P0(n−m)

=
∑
m∈Z

1A(m)1P0(n−m)− δ
∑
m∈Z

1[N ](m)1P0(n−m).

Observe that

1A(m)1P0(n−m) =

{
1 m ∈ A ∩ (n− P0)

0 otherwise
.

Therefore, ∑
m∈Z

1A(m)1P0(n−m) = |A ∩ (n− P0)|,

and
δ
∑
m∈Z

1[N ](m)1P0(n−m) = δ|[N ] ∩ (n− P0)|.

Hence,

(8) fA ∗ 1P0(n) = |A ∩ (n− P0)| − δ|[N ] ∩ (n− P0)|.

By combining, (6) and (7), we have

εNL/2 ≤ |f̂A(α)1̂P0(α)| = | ̂fA ∗ 1P0(α)|,
where we also used the fact that the Fourier transform of a convolution is the product of the
Fourier transforms. Now, we apply triangle inequality once again to obtain

| ̂fA ∗ 1P0(α)| =

∣∣∣∣∣∑
n∈Z

fA ∗ 1P0(n)e−2πinα

∣∣∣∣∣ ≤∑
n∈Z

|fA ∗ 1P0(n)| .

In particular,

(9)
∑
n∈Z

|fA ∗ 1P0(n)| ≥ εNL/2.

At this point, observe that∑
n∈Z

fA(n) =
∑
n∈Z

1A(n)− δ
∑
n∈Z

1[N ](n) = |A| − δN = 0.

It follows that

(10)
∑
n∈Z

fA ∗ 1P0(n) = 0.

Take ∑
n∈Z

(fA ∗ 1P0(n))+

to be the sum of the positive terms in (10) and∑
n∈Z

(fA ∗ 1P0(n))−
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to be the sum of the negative terms. Since the sum in (10) equals 0, these positive and
negative parts cancel each other out, and thus they have the same size in absolute value.
Namely, ∑

n∈Z

(fA ∗ 1P0(n))+ =
∑
n∈Z

∣∣(fA ∗ 1P0(n))−
∣∣ .

Therefore,

(11)
∑
n∈Z

(fA ∗ 1P0(n))+ =
1

2

∑
n∈Z

|fA ∗ 1P0(n)| ≥ εNL/4,

where we also used (9).

Finally, we look back to equation (8):

(fA ∗ 1P0)(n) = |A ∩ (n− P0)| − δ|[N ] ∩ (n− P0)|.
Notice that if n < −qL or n > N , then fA ∗ 1P0(n) = 0. In addition,

(fA ∗ 1P0)(n) ≤ |A ∩ (n− P0)| ≤ L.

Therefore, by (11),∑
n∈[0,N−qL]

(fA ∗ 1P0)(n)+ ≥

(∑
n∈Z

(fA ∗ 1P0)(n)+

)
− L(2qL) ≥ εNL/4− 32L3.

Recall that L ≤ (εN)1/2/16, so 32L3 ≥ εNL/8. Hence,∑
n∈[0,N−qL]

(fA ∗ 1P0(n))+ ≥ εNL/8.

By the pigeonhole principle, there must be some value of n ∈ [0, N − qL] for which

(fA ∗ 1P0)(n) ≥ εNL/8

N − qL
≥ εL/8.

Combining this with (8) yields

|A ∩ (n− P0)| = δ|[N ] ∩ (n− P0)|+ (fa ∗ 1P0)(n) ≥ δL+ εL/8 = L(δ + ε/8).

At last, we conclude that P = n−P0 is an arithmetic progression with the desired properties.
�

Corollary 1. Suppose N ∈ N and A ⊂ [N ] with |A| = δN . If δ ≥
(
rNk−2)−1/(k−1) and A is

F-free, then there exists N ′ ∈ N and A′ ⊂ [N ′] such that A′ is F-free, |N ′| ≥ r1/2N1/2δ/32,
and |A′| ≥ N ′(δ + r2δ/8).

Proof. We have 2 cases based on how many elements of A lie in (βN, γN ].

Case 1: |A ∩ (βN, γN ]| < (γ−β)|A|
2

.

First suppose k = 3. Scaling c1x1 + c2x2 + c3x3 = 0 by −1 gives an equivalent problem.
Thus, we may assume c1, c2 > 0 and c3 < 0. It follows that K = 0, so β = 0 and γ = 1.
Then

|A ∩ (0, N ]| = |A| > (γ − β)|A|
2

,

and the condition for case 1 cannot be met.
18



Suppose k > 3. By the pigeonhole principle,

(i) |A ∩ (0, βN ]| ≥ |A|(1 + (γ − β)/4).

or
(ii) |A ∩ (γN,N ]| ≥ |A|(1 + (γ − β)/4).

Let (i) be true (the proof for (ii) is similar). Set N ′ = βN and A′ = A ∩ (0, βN ]. Since
k > 3,

c
(k−2)/2
k ≥ ck.

Thus,

r1/2N1/2δ/32 ≤ r1/2N/32

=
(γ − β)(k−1)/2N

32c
(k−2)/2
k 2k/2

≤ (γ − β)(k−1)/2N

32ck
.

Recall that
γ − β = (1−K/J)2.

In addition, we may assume K 6= 0 by scaling c1x1 + · · · ckxk = 0 by −1. Then

(γ − β)(k−1)/2N

32
=

(1−K/J)k−1N

32ck

=
1
J

(J −K)(1−K/J)k−2N

32

≤
K
J

(J −K)(1−K/J)k−2N

32ck

=
β(J −K)(1−K/J)k−3N

32ck
.

We also know ck = J −K. In this way, we have

β(J −K)(1−K/J)k−3N

32ck
=
β(1−K/J)k−3N

32
≤ βN

= N ′.

Putting these facts together, we obtain

N ′ ≥ r1/2N1/2δ/32.

Finally, we see

|A′| ≥ |A|(1 + (γ − β)/4)

= N(δ + δ(γ − β)/4))

≥ N ′(δ + δ(γ − β)/4).
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In addition, we know k > 3, ck ≥ 1, and γ − β ≤ 1. Therefore,

N ′(δ + δ(γ − β)/4) ≥ N ′
(
δ +

δ(γ − β)k−1

ck−2k 2k

)
= N ′(δ + r2δ/8).

as needed.

Case 2:|A ∩ (βN, γN ]| ≥ (γ−β)|A|
2

.

Lemmas 1 and 2 provide an F -free arithmetic progression P = {n+ `q : 1 ≤ ` ≤ L} ⊂ [N ]
such that |A ∩ P | ≥ L(δ + r2δ/8). Set N ′ = L and A′ = ((A ∩ P ) − n)/q. F is invariant
under scaling and translation. Therefore, since A ∩ P is F free, A′ is also F free. Hence, A′
and N ′ satisfy the desired conditions.

�

We are prepared to prove theorem 2.

Proof. Set N0 = N and A0 = A. By lemma 3, as long as δj ≥
(
rNk−2

j

)−1/(k−1), there exist
Nj+1 ∈ N and Aj+1 ⊂ [Nj+1] with Aj+1 = δj+1Nj+1 where A1 is F free, δ1 ≥ δ + rδ2/8 and
|Nj+1| ≥ r1/2N

1/2
j δ/32. But this process cannot continue forever. In fact, since the density

increment at each step is rδ2j/8, the δj’s will exceed 2δ in at most δ/(rδ2/8) = 8/(rδ) steps,
at which point they will exceed 4δ in at most 4/(rδ) steps, and so on. Successively doubling
in this way, the δj’s must eventually exceed 1, but this is absurd. Therefore, we must have
δj−1 <

(
rNk−2

j−1
)−1/(k−1) for some

j <
8

rδ
+

4

rδ
+

2

rδ
+ · · · = 16

rδ
.

We use this inforation to create the following inequality chain.

δ ≤ δj−1 ≤ r−1/(k−1)N
−(k−2)/(k−1)
j−1

≤ r−1/(k−1)N
−1/2
j−1

≤ r−1/(k−1)(32r−1/2δ−1)1/2N
−1/4
j−2

≤ r−1/(k−1)(32r−1/2δ−1)3/4N
−1/8
j−3

...

≤ r−1/(k−1)(32r−1/2δ−1)1−1/2
j−1

N−1/2
j

≤ r−1/(k−1)(32r−1/2δ−1)N−1/2
16/(rδ)

.

Rearranging the extreme ends of the chain yields

N1/216/(rδ) ≤ 32r−1/2−1/(k−1)δ−2.

Take the natural logarithm of both sides to obtain

logN ≤ 216/(rδ) log
(
32r−1/2−1/(k−1)δ−2

)
.
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Take the natural logarithm of both sides once more.

log logN ≤ 16

rδ
log 2 + log log

(
32r−1/2−1/(k−1)δ−2

)
≤ 16

rδ
log 2 + log log

(
32r−2δ−2

)
.

Note for every x > 0, log x < x/2. Thus,
16

rδ
log 2 + log log

(
32r−2δ−2

)
<

16

rδ
log 2 + log

(
16r−2δ−2

)
=

16

rδ
log 2 + 2 log

(
4r−1δ−1

)
≤ 16

rδ
log 2 +

4

rδ

≤ 16

rδ
.

In total, these inequalities give the desired result:

|A| ≤ 16N

r log logN
.

�

8. Finitary density regularity vs. density regularity

Notice that our statement of Roth’s theorem gives a quantitative upper bound on F -free
subsets of N. By finding such an upper bound, we prove finitary density regularity.

Definition 1. We call F finitary density regular if for every δ > 0, there exists N0 ∈ N such
that:

(A ⊆ [N ] is F -free =⇒ |A| < δN) for all N ≥ N0.

Notice that δ corresponds to the upper bound which grows arbitrarily small. In the case
of Roth’s theorem for a general linear equation, this is 16/ log logN . Even though proving
density regularity is the goal in some problems, other times we may want to find improved
bounds. As we will see in section 9, it is possible to do much better than 16/ log logN in
the case of Roth’s theorem.

As expected, finitary density regularity implies density regularity.

Proposition 1. If F is finitary density regular, then F is density regular.

Proof. Let A ⊂ N be F free, and let ε > 0. Since F is finitary density regular, there exists
N0 ∈ N such that

|A ∩ [N ]|
N

< ε

for every N > N0. It follows that

lim
N→∞

|A ∩ [N ]|
N

= 0.

Thus, δ(A) = 0, and F is density regular, as needed. �
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Interestingly, the converse is not necessarily true. We will construct an extreme example.
Make the following definitions.

α(F) = sup{δ̄(A) : A ⊂ N is F -free}.
β(F) = sup{δ : For infinitely many N ∈ N, there exists an F -free set A ⊂ [N ] with |A| > δN}.

Observe that F is density regular if and only if α(F) = 0 and F is finitary density regular
if and only if β(F) = 0. In sense, α measures how close F is to density regularity and β
measures how close F is to finitary density regularity. Below, we construct a family that is
density regular but not finitary density regular in the most extreme way possible (α(F) = 0
and β(F) = 1).

Proposition 2. Let
F = {{x, y} ∈ N2 : y > x2}

Then α(F) = 0 and β(F) = 1.

Proof. Let A ⊂ N. Suppose A ⊂ N is infinite. Take x ∈ A. Since A is infinite, there exists
some y ∈ A such that y > x2. Then A is not F -free. Thus, if A is F -free, then F must be
finite, so δ(A) = 0. It follows that α(F) = 0.

Let 0 < δ < 1, N > 1
1−δ . Notice {N,N + 1, ...., N2} ⊂ [N2] is F -free, and

|{N,N + 1, ...., N2}| = N2 −N + 1

> N2 −N
= N2(1− 1/N)

> N2(1− (1− δ))
= δN2.

It follows that β(F) = 1.

�

9. Some cutting-edge results related to Roth’s theorem

Mathematicians continue to refine and expand upon results related to Roth’s theorem.
Some have sought to improve density bounds while others have worked towards new gener-
alizations. Recently, Bloom and Sisask [18] obtained a much anticipated, improved bound
on the density of sets lacking 3AP’s.

Theorem 3. Let N ∈ N. If A ⊂ [N ] contains no 3AP, then

|A| ≤ CN/(logN)1+ε,

for some constants C, ε > 0.

Note that 1/(logN)1+ε shrinks far more quickly than 1/ log logN , so this is indeed an
improved upper bound.

Schoen and Sisask [19] were able to find even better density bound for sets with no solutions
to x+ y + z = 3w.

22



Theorem 4. If N ≥ 3 and A ⊂ [N ] contains no solution to x + y + z = 3w with x, y, z, w
not all equal, then

|A| ≤ N

exp(c(logN)1/7)

for some positive constant c.

Notice that Roth’s theorem for a general linear equation applies to x + y + z = 3w (the
coefficients sum to zero), but 1/ exp(c(logN)1/7 shrinks much more quickly than 1/ log logN
or 1/(logN)1+ε.

Chapman and Chow very recently created a powerful extension of both Roth’s theorem
and Rado’s theorem. Consider solutions to a polynomial equation of the form

(1) a1P (x1) + · · ·+ asP (xs) = 0,

where P is an intersective polynomial with integer coefficients of degree d and a1, . . . , as ∈
Z(P is intersective if P (Z) contains a multiple of every integer). The equations in Schur’s
theorem, Rado’s theorem, and Roth’s theorem for a general linear equation are all of this
form (with P (x) = x). As another example, Pythagorean triples satisfy such a polynomial
equation (P (x) = x2 and a1 = a2 = 1, a3 = −1).

They showed that under the right conditions, the family of solutions to this polynomial
equation are density regular if and only if the coefficients sum to zero (compare to Roth’s
theorem for a general linear equation) and partition regular if and only if a subset of the
coefficients sums to zero (compare to Rado).

In particular, let F be a family of solutions to (1). Chapman and chow [20] proved the
following result.

Theorem 5. Let

s1(d) =


5, if d = 2

9, if d = 3

d2 − d+ 2b
√

2d+ 2c+ 1, if d ≥ 4

.

If s ≥ s1(d), then we have the following.

(1) F is partition regular if and only if there exists a non-empty subset of {a1, . . . , as}
which sums to 0.

(2) F is density regular if and only if a1 + · · ·+ as = 0.

If s1(2) were 3 instead of 5, we would have a solution to the Pythagorean triples problem!

10. The transference principle

We now introduce the idea of relative density.

Definition 1. For A ⊆ B ⊆ N, define

δB(A) = lim
N→∞

|A ∩B|
|B ∩ [N ]|

.
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Definition 2. For B ⊂ N we say a family F is B-density regular if every F -free A ⊂ B has
δB(A) = 0.

We think of δB(A) as the conditional probability a natural number lies in A given it lies
in B. With these definitions, we are ready to state a suprising fact proven by Ben Green
and Terrence Tao [11]. Let P denote the set of prime numbers.

Theorem 6 (Green-Tao theorem). For every k ∈ N, the family of kAP’s is P-density
regular, where P is the set of primes.

Interestingly, δ(P) = 0, so the Green-Tao theorem is not a consequence of Szemerédi’s
theorem. Nevertheless, this property of dense subsets of N “transfers” to a property of
relatively dense subsets of the prime numbers. This is the transference principle.

Mathematicians often study the transference principle in the density setting, as in the
Green-Tao theorem, but the same cannot be said of the transference principle in the coloring
setting. Here, we provide some definitions and observations in this direction.

Definition 3. For B ⊆ N, we say a family F is B-partition regular if for every r ∈ N, every
r-coloring of B yields a monochromatic member of F .

Let S be the set of perfect squares. We may ask the following question: are the Schur
triples S-partition regular? This is the unsolved Pythagorean triples problem.

Many results concerning partition regularity carry over to the relative setting. We illustrate
this fact with a few exercises, after which our discussion is complete. The first provides a
relationship between relative partition regularity and relative density regularity.

Proposition 1. For any B ⊂ N and family F of finite subset of N, B-density regularity of
F implies B-partition regularity of F .

Proof. Suppose B ⊂ N, F is a family of finite subsets of N such that F is not B-partition
regular, and assume for the sake of contradiction that F is B-density regular. Then there
exists a partition {C1, C2, ..., Ck} of B which yields no monochromatic member of F . Thus,
for each Ci, we have δB(Ci) = 0 because we have assumed F is B-density regular. Therefore,

0 =
k∑
i=1

δB(Ci)

=
k∑
i=1

lim
N→∞

|Ci ∩ [N ]|
|B ∩ [N ]|

= lim
N→∞

k∑
i=1

|Ci ∩ [N ]|
|B ∩ [N ]|

,

by the limit sum property. We also know {C1, C2, ..., Ck} is a partition of B, so the the Ci’s
are pairwise disjoint and

⋃k
i=1Ci = B. Thus,

lim
N→∞

k∑
i=1

|Ci ∩ [N ]|
|B ∩ [N ]|

= lim
N→∞

∣∣∣⋃k
i=1(Ci ∩ [N ])

∣∣∣
|B ∩ [N ]|
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= lim
N→∞

∣∣∣[N ] ∩
⋃k
i=1Ci

∣∣∣
|B ∩ [N ]|

= lim
N→∞

|B ∩ [N ]|
|B ∩ [N ]|

= 1.

Putting everything together, we have 0 = 1, a contradiction. Hence, F is not B-density
regular.

�

By setting B = N, we see that density regularity implies partition regularity. For instance,
Szemerédi’s theorem implies Van der Waerden’s theorem. However, the converse is not
necessarily true. For instance, the Schur triples are partition regular but not density regular.
Indeed, the set of odd numbers contains no Schur triple even though it has density 1/2.

Here is an interesting consequence of partition regularity: if F is partition regular, then
every r-coloring of F yields infinitely many monochromatic members of F . It turns out that
this is true in the relative setting as well.

Proposition 2. Suppose F is a family of finite subsets of N, each of which contains at least
two elements, B ⊂ N and r ∈ N, and further suppose F is B-partition regular. Then every
r-coloring of B yields infinitely many monochromatic members of F .

Proof. Let C1, ..., Cr be an arbitrary r-coloring of B. Assume C1, ..., Cr yields finitely many
monochromatic members of F , whose elements form the set M = {m1, ...,mj}. Then

{m1}, ..., {mj}, C1 −M,C2 −M, ..., Cr −M.

is a finite coloring of B with no monochromatic member of F . Thus, F is not B-partition
regular. �

Proposition 3. Suppose c1, ..., ck ∈ Z and c1 + · · ·+ ck 6= 0. Let F be the family of solutions
to c1x1+· · ·+ckxk = 0. If F is B-partition regular, then B contains infinitely many multiples
of every natural number.

Proof. Suppose c1x1 + · · ·+ ckxk is B-partition regular. Let c1 + · · ·+ ck = c, and let m ∈ N.
We focus on the following partition of B:

{B1, B2, ..., Bcm, },
where

Bk = {r ∈ B : r ≡ k (mod cm)}.
By combining the fact that F is B-partition regular with proposition 2, we know there is
some Bl which contains infinitely members of F . Say {x1, ..., xk} ⊂ Bl is a member of F .
Then

0 = c1x1 + · · · ckxk ≡ lc (mod cm).

Then cm | lc, so m | l. It follows that every element of Bl is divisible by m, and we also
know Bl contains infinitely many elements because it contains infinitely many members of
F . Thus, B contains infinitely many multiples of m.
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Proposition 4. Let B ⊂ N contain qN. Let F be a partition regular family in N, and
suppose that if r ∈ N and m ∈ F , then rm ∈ F . Then, F is B-density regular.

Proof. Let C1, .., Cr be a partition of qN. For each i, set Di = Ci/q. Then D1, ..., Dr

is a partition of N. Because F is partition regular, we know that for some l, there is a
monochromatic member of F , say m, in Dl. Then qm is a monochromatic member of F in
Cl, and we are done. It follows that F is qN partition regular, so F is B-partition regular,
as needed.

�
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