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Abstract

We provide a multidimensional extension of previous results on the existence of polynomial
progressions in dense subsets of the primes. Let A be a subset of the prime lattice lattice Pd

of positive relative upper density. We show that A contains all polynomial configurations of
the form x + P0(y)v0, . . . , x + Pl(y)vl, for some x ∈ Zd and y ∈ N, which satisfy a certain
non-degeneracy condition. Moreover, if A ⊆ Pd

N is of relative upper density δ > 0 then one may

have that 0 < y < logL N as long as N is sufficiently large, where L is a constant depending on
the configuration but is independent of N and δ.

1 Introduction

A celebrated result in analytic number theory, due to Green and Tao [9], states that the primes
contain arbitrary long arithmetic progressions. In fact they have proved the following. Let PN

denote the set of primes up to N .

Theorem A. Let δ > 0, V = {v0, . . . , vl} ⊆ Z. If N ≥ N(δ, V ) and A ⊆ PN with |A| ≥ δ|PN | then
A contains an affine image of V i.e. a set V ′ = {x+ yv0, . . . , x+ yvl}.

It is easy to see that this implies that any subset of the primes of positive relative upper density
contains an affine image of any finite set of integers. In [18] Tao has obtained an analogue of
Theorem A for the Gaussian primes and asked if similar results hold for subsets of the prime lattice
Pd. The first result in this direction was provided by B. Cook and the second author [4] for finite
sets V ⊆ Zd which are in general position in the sense that |πj(V )| = |V | for every 1 ≤ j ≤ d, where
πj : Zd → Z denotes the orthogonal projection to the jth-axis.

Theorem B. Let d ≥ 1, δ > 0 and let V = {v0, . . . , vl} ⊆ Zd be a set in general position. If
N ≥ N(δ, V ) and A ⊆ Pd

N with |A| ≥ δ|PN |d then A contains an affine image of V i.e. a set
V ′ = {x+ yv0, . . . , x+ yvl}.
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The full multidimensional extension of Theorem A were obtained independently in [21, 5] and [7]
where it was shown that the conclusion of Theorem B holds for any finite set V ⊆ Zd.
In [19] Tao and Ziegler has extended Theorem A in another direction, from arithmetic to polynomial
progressions which are sets of the form x+ P0(y), . . . , x+ Pl(y), where P = (P0, . . . , Pl) is a family
of integral polynomials. In [20, 22] they have provided quantitative bounds on the size of the
parameter y measuring the “size” of the polynomial progression.

Theorem C. Let δ > 0, l ∈ N and let P = (P0, . . . , Pl), Pi ∈ Z[x], Pi(0) = 0. If N ≥ N(δ, l,P) and
A ⊆ PN with |A| ≥ δ|PN |, then A contains a polynomial progression {x+ P0(y), . . . , x+ Pl(y)} for
some x, y ∈ N.
Moreover, one may have 0 < y < logLN , where L = L(l,P) is a constant depends only the family
of polynomials P = (P0, . . . , Pl).

Note that the first statement in Theorem C was proved in [19] while the bound 0 < y < logLN with
L = L(l, P, δ) depending also on the density δ was given in [20]. The dependence on δ was removed
later in [22] by proving a difficult global concatenation theorem, which consists of polynomial
averages of local Gowers norms via a global Gowers norm. Note that the aim of [22] was to obtain
asymptotics for the density of certain polynomial progressions in the primes.

Corresponding lower bounds were also discussed in [20], extending a construction in [6], showing
that y ≫ logl N is necessary, even for linear case, when Pi(y) = iy for 0 ≤ i ≤ l.

Our aim in this note is twofold. On the one hand we show that Theorem C can be extended to
the multi-dimensional setting for polynomial configurations that satisfy a similar non-degeneracy
condition as given in Theorem B for affine linear configurations. On the other hand we’d like to
present this result in an essentially self-contained manner, relying only on a sieve theoretic estimate
(see (2.6) below) and a quantitative version of a theorem of Bergelson-Leibman [2] on polynomial
configurations in dense subsets of the integer lattice. In one dimension our main result reduces to
Theorem C; however the bound 0 < y < logLN with L being independent of δ, is obtained via a
very simple concatenation argument involving only local Gowers norms.

Definition 1.1. Let l ≥ 1, V = {v0, . . . , vl} ⊆ Zd be a finite set and let P = (P1, . . . , Pl) be a family
of integral polynomials. We say that the polynomial configuration PV = (P0(y)v0, . . . , Pl(y)vl) is in
general position, if for all 0 ≤ j < j′ ≤ l and 1 ≤ i ≤ d,

(1.1) deg
(
πi(Pj(y) vj − Pj′(y) vj′)

)
= deg (Pj(y) vj − Pj′(y) vj′),

as a polynomial in y, πi being the natural projection to the ith coordinate axis.

Our main result is the following.

Theorem 1. Let δ > 0, d, l ∈ N and let PV = (P0(y)v0, . . . , Pl(y)vl) with Pj ∈ Z[y], Pj(0) = 0 be a
polynomial configuration in general position. If N ≥ N(δ,P, V ) and A ⊆ Pd

N with |A| ≥ δ|Pd
N |, then

there exist x, y ∈ N with 0 < y < logLN , such that

(1.2) {x+ P0(y)v0, . . . , x+ Pl(y)vl} ⊆ A,

where L = L(P, V ) is a constant depending only on initial data P, V .
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Remarks.

• In dimension d = 1, taking v0 = . . . = vl = 1, Theorem 1 reduces to Theorem C.

• If the set V = {v0, . . . , vl} is in general position then for any polynomial P ∈ Z[y], P (0) = 0
the polynomial configuration PV := (P (y)v0, . . . , P (y)vl) is also in general position, hence
Theorem 1 extends Theorem B.

• If the polynomials P0, . . . , Pl have distinct degrees then the pattern PV is in general position,
as long as πi(vj) ̸= 0 for all 1 ≤ j ≤ l and 1 ≤ i ≤ d.

• If A = Ad
1 where A1 ⊆ P is of positive relative upper density, then Theorem 1 one fol-

lows from the 1-dimensional result of Tao-Ziegler [20] as the polynomial pattern PV (y) =
{P0(y)v0, . . . , Pl(y)vl} is contained in the d-fold direct product of the polynomial progression
P(y) := {πi(Pj(y) vj) : 1 ≤ j ≤ l, 1 ≤ i ≤ d}.

• In general, condition (1.1) is equivalent the following. If the leading term of Pj(y) vj−Pj′(y) vj′

is of the form cjj′ y
djj′ then πi(cjj′) ̸= 0 for all 1 ≤ i ≤ d and 0 ≤ j < j′ ≤ l.

Our approach follows that of [19, 20] and roughly consists of two parts. The starting point is to
control polynomial averages of the form:

(1.3) ΛP,V (f0, . . . , fl) := Ex∈XEy∈[M ]f0(x+ P0(y)v0) . . . fl(x+ Pl(y)vl),

where X = (Z/NZ)d, M := logLN , and we used the averaging notation Ea∈Af(a) :=
1
|A|
∑

a∈A f(a).
The first part is to bound these averages in terms of polynomial averages of certain Gowers type
local box norms. Recall that given an s-tuple of vectors u1, . . . , us ∈ Zd, we define the corresponding
local box norm at scale 1 ≤ M ≤ N , as

(1.4) ∥f∥2s□M (u1,...,us)
:= Ex∈XE

y
(0)
1 ,...,y

(0)
s ,y

(1)
1 ,...,y

(1)
s ∈[M ]

∏
ω∈{0,1}s

f(x+ y
(ω1)
1 u1 + . . .+ y(ωs)

s us)

For bounded functions, when say |fi| ≤ 1, the so-called PET induction scheme of Bergelson-Leibman
[2] estimates the averages in (1.3) via an polynomial averages of box norms, namely one has

(1.5) |ΛP,V (f0, . . . , fl)| ≲ min
1≤j≤s

(
Eh∈[H]t∥fj∥2

s

□M (Q
1
(h),...,Q

s
(h)

) 1
2s + o(1),

where Q
1
, . . . , Q

s
: Zt → Zd is a family of integral non-constant polynomial maps, and H := log

√
LN

is a parameter, also referred to as the “fine scale” [20]. By o(1) we will denote a quantity that goes
to 0 as N → ∞, that may depend on the initial configuration P, V and parameters d, l.

In one dimension it was shown in [19] that such estimates remain true when the functions fi are
not bounded uniformly in N , but bounded by a function νN , referred to a pseudo-random measure
[9, 19], that behaves very nicely with respect to polynomial type averages, satisfying the so-called
polynomial forms condition [19, Definition 3.6], described later. In our multidimensional setting
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it will be crucial to assume that the polynomial configuration PV is in general position in order
to extend the polynomial forms condition to for the d-fold tensor product of the measure νN , see
Proposition 2.1 below, which is crucial to verify estimate (1.5).

The second part of the argument is a transference argument of [20] adjusted to the multi-dimensional
setting to obtain a decomposition of a function f ≥ 0 bounded by a pseudo-random measure

ν(d) = ν
(d)
N with respect to a given small quantity ε > 0. More precisely, to show that given a

function f : Zn → R satisfying 0 ≤ f ≤ ν(d), one has the decomposition

(1.6) f = g + h, 0 ≤ g ≤ 2 and ∥h∥□H,M (Q
1
,...,Q

s
) ≤ ε,

where we have used the notation,

(1.7) ∥h∥□H,M (Q
1
,...,Q

s
) :=

(
Eh∈[H]t∥fj∥2

s

□M (Q
1
(h),...,Q

s
(h)

) 1
2s .

Note that both ∥ ∥□M (u1,...,us)
and ∥ ∥□H,M (Q

1
,...,Q

s
) are indeed norms.

The idea to use estimates like (1.5)-(1.6) to prove the existence of arithmetic progressions in the
primes originated and was crucial in [9], and later also in [19, 20] for polynomial progressions. In
our case starting from a set A ⊆ [N ]d of size |A| ≥ δ |PN |d one construct a function fA : [N ]d → R≥0

so that Ex∈[N ]dfA(x) ≥ c0 δ (for some absolute constant c0 > 0) and 0 ≤ fA(x) ≤ log(d)(x) with

log(d)(x) =
∏d

i=1 log xi, simply by writing fA(x) = 1A(x) log
(d)(x). Then one may truncate the

support of fA to [
√
N,N −

√
N ]d which changes its average only by a negligible amount, and then

one may identifies [N ]d with X = (Z/NZ)d in estimating the averages ΛP,V (fA, . . . , fA) as the
total size of the polynomial configuration is O(logCLN) which is much less that

√
N thus there

no“wraparound” issues.

If one can find a pseudo-random measure ν
(d)
N (x) ≫ log(d)(x) for which (1.5) and (1.6) holds for

functions |fi| ≤ ν
(d)
N and 0 ≤ f ≤ ν

(d)
N , then by multi-linearity one has

(1.8) ΛP,V (fA, . . . , fA) = ΛP,V (g, . . . , g) +O(ε).

Invoking the multi-dimensional polynomial extension of Szemerédi’s theorem by Bergelson-Liebman
[2], more precisely its more quantitative version given in [19] one has that

(1.9) ΛP,V (g, . . . , g) ≥ c(δ),

for some constant c(δ) > 0 for sufficiently large N , that may also depend on the initial data P, V .
Choosing ε > 0 much smaller than c(δ) it follows that

(1.10) ΛP,V (fA, . . . , fA) > 0,

which implies the existence of configurations x+ P0(y), . . . , x+ Pl(y) in A with 0 < y < logLN .

This cannot be done due to the irregularity of distribution of primes in small residue classes, however
is possible after restricting A, and hence the support of fA, onto a residue class x ≡ b (mod W ),
where W =

∏
p≤w p is the product of small primes p ≤ w, with w = w(N) is a function that is a

sufficiently slowly growing to infinity with N , i.e. after applying the so-called W -trick [9].

4



Further directions.

If the polynomials P0, . . . , Pl have distinct degrees it is expected that there are good explicit
lower bounds for the constants c(δ) in estimate (1.9). In fact, in light of the recent quantita-
tive breakthrough results the in one dimension by Peluse [15], by Peluse-Prendiville-Shao [16],
Kravitz-Kuca-Leng [11, 12] and by Kosz-Mirek-Peluse-Wright [13] it is plausible that one may
take c(δ) = exp exp (−δ−C) or equivalently δ = (log log N)−c. The various o(1) = oN→∞(1) error
terms in our arguments arise from the error term in Proposition 2.1, the so-called polynomial forms
condition, are obtained via purely on number theoretic considerations are of O((log log log log N)−1),
see Section 2. Thus it is expected that similar poly-logarithmic bounds can be obtained on the
density δ of sets A ⊆ Pd

N .

We expect that our main result holds in full generality, without the assumption that the polynomial
configuration PV (y) being in general position, at least without the restriction y ≤ logLN on the
”size” of the configuration. If the polynomials P1(y), . . . , Pl(y) have the same degree d but different
main terms then such results may be obtained using the very recent quantitative result of Matthiesen-
Terävävainen-Wang [14] on the asymptotic distribution of polynomial progressions {x+P1(y), . . . , x+
Pl(y)} in PN , combined with the sampling argument of Fox-Zhao [7]. Indeed, then one one may
allow patterns whose projections to the coordinate axis forms such polynomial progressions, for
example configurations of the form PV (y) = {P11(y)e1, . . . , Pl11(y)e1, . . . , P1d(y)ed, . . . , Pldd(y)ed}
where e1, . . . , ed being the standard basis vectors of Rd. However, to extend this approach to
polynomials whose degrees may not be the same, or to ”small” configurations one would need to
prove some instances of the Bateman-Horn conjectures [1] with are currently out of reach.

2 The pseudo-random majorant and the polynomial forms condi-
tion.

We follow [20] to define the the weighted indicator function of the set A ⊆ PN ′ truncated and re-
stricted to an appropriate reduced residue class x ≡ b (mod W ). Let w = w(N ′) = 1

10 log log log N ′

and let W =
∏

p≤w (p prime) and note that W ≪ (log log N ′)1/10 by the prime number theorem.
We will set N := [N/W ].

If A ⊆ PN ′ such that |A| ≥ δ|PN ′ | then by pigeonhole principle, we can choose b = (b1, . . . , bd) so
that (bi,W ) = 1 for all 1 ≤ i ≤ d and

(2.1) |{x ∈ [
√
N,N −

√
N ]d, Wx+ b ∈ A}| ≥ δ

2

(
NW

ϕ(W ) log N

)d

,

for sufficiently large N ′, using again the prime number theorem in arithmetic progressions. Define
the function fA : [N ]d → R≥0,

(2.2) fA(x) :=

(
c0

ϕ(W ) log N

W

)d

1A(Wx+ b),

if x ∈ [
√
N,N −

√
N ]d and is equal to zero otherwise. Then by (2.1) we have that

(2.3) Ex∈[N ]dfA(x) = N−d
∑

x∈[N ]d

fA(x) ≥
c0δ

4
,

5



where we used the averaging notation Eb∈Bf(b) := 1
|B|
∑

b∈B f(b). Here c0 > 0 is an absolute

constant needed to be able to majorize the function fA(x) by the function ν(d)(x) =
∏d

i=1 νi(xi),
where is the ν pseudo-random measure used originally in [19, 20], namely

(2.4) νi(x) :=
ϕ(W ) log R

W

 ∑
d|Wx+bi

µ(d)χ

(
log d

log R

) ,

for x ∈ [N ], where R = N ε0 , µ is the Möbius function and χ ∈ C∞(−1, 1) is a smooth even function
satisfying

´ 1
0 |χ′(t)|2dt = 1 and χ(0) ≥ 1/2. It is easy to see that if we choose c0 small enough, say

c0 =
ε0
10 , then we have

(2.5) 0 ≤ fA(x) ≤ ν(d)(x) for all x ∈ X.

the pseudo-randomness property of the product measure ν(d) we need is a multi-dimensional analogue
of the so-called polynomial forms condition of Tao-Ziegler [20, Proposition 3], based on the following
correlation estimate proved for the measure ν = νb (uniformly for b satisfying (b,W ) = 1). Let
h1, . . . , hJ be integers (not necessarily distinct) of size hj = O(

√
N), then

(2.6) Ex∈[N ]

J∏
i=1

ν(x+ hi) = 1 + o(1) +O

(
Exp

(
O

( ∑
1≤i<i′≤I

∑
w≤p≤Rlog R

p|hi−hi′

1

p

)))
,

where Exp(x) = ex − 1, as long as ε0 is sufficiently small with respect to J .

Definition 2.1. Let Q = (Q
1
, . . . , Q

J
) : Zt → Zd be a polynomial map. We say that the map Q is

non-degenerate if

(2.7) deg (πi(Qj
−Q

j′
)) ≥ 1,

for all 1 ≤ j < j′ ≤ J , 1 ≤ i ≤ d, where πi is the natural projection the ith coordinate axis.

Note in the special case Q = PV the notion of being non-degenerate is weaker then the notion of
being in general position given in Definition 1.1. However this weaker notion is enough to derive the
following key property of polynomial maps.

Proposition 2.1. Let t, d,D, J be fixed natural numbers, let ε0 sufficiently small and L sufficiently
large depending on t, d,D, I. Let Q = (Q

1
, . . . , Q

J
) : Zt → Zd be a non-degenerate integral polynomial

map of degree at most D, with coefficients of size O(WC). Then

(2.8) Eh∈[H]t Ex∈X

J∏
j=1

ν(d)(x+Q
j
(h)) = 1 + o(1),

where H = log
√
LN and X = (Z/NZ)d ≃ [N ]d.

The following simple estimates involving the Exp function will be useful in proving Proposition ??.
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Lemma 2.1. Let Ci > 1 and αi > 0 for 1 ≤ i ≤ d. Then one has for sufficiently large N ,

(2.9)

d∏
j=1

(1 + o(1) + CiExp (αi) ≤ 1 + o(1) +

d∏
j=1

CiExp (α1 + . . .+ αd)

(2.10) Exp (α1 + . . .+ αd) ≤ Exp (2dα1) + . . .+ Exp (2dαd).

(2.11)
d∏

j=1

(1 + o(1) + C Exp (αi)) ≤ 1 + o(1) + Cd
d∑

j=1

Exp (2dαj) (C > 1).

Proof. For d = 2, one has

(1 + o(1) + C1Exp (α1)) (1 + o(1) + C2Exp (α2))

= 1 + o(1) + C1(1 + o(1))Exp (α1) + C2(1 + o(1))Exp (α2) + C1C2Exp (α1)Exp (α2)

= 1 + o(1) + C1C2Exp (α1 + α2) + C1(1 + o(1)− C2)Exp (α1) + C2(1 + o(1)− C1)Exp (α2)

≤ 1 + o(1) + C1C2Exp (α1 + α2),

using Exp (α1)Exp (α2) = Exp (α1 + α2)− Exp (α1)− Exp (α2). Then (2.9) follows by induction.
Writing Exp (αi) = ui for i = 1, 2, so eαi = 1 + ui, one has

Exp (α1 + α2) = u1 + u2 + u1u2 ≤ 2u1 + 2u2 + u21 + u22 = Exp (2α1) + Exp (2α2).

Then (2.10) follows by induction on d and (2.11) follows immediately from (2.9) and (2.10).

Proof of Proposition ??. We have by (2.6) and (2.11)

Ex∈X

J∏
j=1

ν(d)(x+Q
j
(h)) =

d∏
i=1

(
Exi

J∏
j=1

νi(xi + πi(Qj
(h)))

)

≤
d∏

i=1

(
1 + o(1) + C Exp (C αi(h)

)
≤ 1 + o(1) + Cd

d∑
i=1

Exp (C 2d αi(h)),

where

αi(h) =
∑

1≤j<j′≤I

αj,j′,i, with αj,j′,i(h) =
∑

w≤p≤Rlog R,

p|πi(Qj
(h)−Q

j′ (h))

1

p
.

Thus to prove (2.7) it is enough to show that for fixed 1 ≤ j < j′ ≤ I and 1 ≤ i ≤ d, one has

(2.12) Eh∈[H]t

∑
w≤p≤Rlog R,

p|πj(Qi
(h)−Q

i′ (h))

1

p
= o(1).

Note that by our assumptions the polynomial ∆Q(h) := πi(Qj
(h)−Q

j′
(h)) has degree at least 1

and at most D.
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To estimate the above sum first consider set B of the primes p ≥ w for which the polynomial ∆Q
identically vanishes (mod p). Since all such primes p must divide the coefficients of ∆Q which are
of size O(WC) we have

w|B| ≤
∏
p∈B

p ≤ WC ≪ eC w,

by the prime number theorem, thus∑
p∈B

1

p
≤ |B|

w
≪ 1

log w
= o(1).

Next, we partition the sum in p /∈ B into dyadic intervals 2k ≤ p < 2k+1, and estimate the
contribution of each part depending the size of the parameter k.

Assume first that 2k/2 ≤ log H =
√
L log log N . Since the polynomial ∆Q has degree at least 1

(mod p), and p is much smaller than H, the number of h ∈ [H]t satisfying p|∆Q(h) is at most
Ht/p+O(1), thus

(2.13) Eh∈[H]t

∑
2k≤p<2k+1, p|∆Q(h)

1

p
≤ 1

2k
+O(H−1).

Summing this for 2k ≥ w is at most O(1/w) = o(1).

Assume now 2k/2 ≥ logH. Then left side of (2.13) is estimated by,

1

2k
Eh∈[H]t |{2k ≤ p < 2k+1; p|∆Q(h)}| ≤ D log H

k 2k
+O(H−1) ≪ 1

k2k/2
+ o(1).

Here we used the well-known fact that |{h ∈ [H]t,∆Q(h) = 0}| = O(Ht−1) and if 1 ≤ |∆Q(h)| ≤ HD

then
∏

p|∆Q(h) p ≤ HD thus the number of primes p ≥ 2k, p|∆Q(h) is O(D logH/k).
This proves (2.12) and Proposition 2.1 follows.

Note that the o(1) error term we obtained is O(1/ log w) which is O((log log log log N)−1) with the
implicit constant may depending on the initial parameters d,D, J but is independent of t.

3 PET induction and the generalized von Neumann inequality.

We describe the PET induction scheme originally devised by Bergelson and Leibman [2] for bounded
function and later extended by Tao and Ziegler to functions bounded by a pseudo-random measure
ν. We’ll follow the notation of [19] except that in our multi-dimensional setting we will have l shift
operators in the directions of the vector v1, . . . , vl, namely Tjf(x) := f(x+ vj) for 1 ≤ j ≤ l. We
will estimate averages of the form

(3.1) ΛP(
−→
f ) = Ex∈XEy∈[M ]

d∏
j=1

T
Pj(y)
j fj(x),

for a family of functions
−→
f = (f1, . . . , fl) satisfying |fj | ≤ ν(d), using repeated applications of

van der Courput’s lemma [19] which in our context is the following simple observation. Let xn
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be a sequence of real numbers satisfying xn = O(logC N) uniformly in n. Let M = logLN and

H = log
√
LN with L sufficiently large with respect C. Then,

(3.2) En∈[M ] xn = Eh∈HEn∈[M ] xn+h + o(1),

as shifting the average by a small amount h will change it only slightly. Then by the Cauchy-Schwarz
inequality,

(3.3) |En∈[M ] xn|2 ≤ En∈[M ]Eh,h′∈[H] xn+h xn+h′ + o(1),

After each application we will arrive at a new system of polynomials some of which will have reduced
degrees in the y-variable or applied to the measure ν(d) in place of a function fj . Eventually, one
arrives at a system where each polynomial corresponding to a shift applied to one of the functions
fj is linear in y but may depend on the number of additional small parameters h1, . . . , ht. Averages
over such systems are then majorized by polynomial averages of local box norms, described in the
introduction.

Example. Let us first illustrate the procedure with an example. Let d = 2, Tif(x) := f(x+ vi) for
i = 1, 2.

Λ(
−→
f ) = Ex Ey f0 · T y

1 f1 · T
y2

2 f2,

where x ∈ X, y ∈ [M ], and |fi| ≤ ν := ν(2). We assume that vi has no zero coordinates so the
system P(y) = (0, yv1, y

2v2) is in general position. Then,

|Λ(
−→
f )| ≤ Ex ν |Ey T

y
1 f1 · T

y2

2 f2|,

hence by van der Courput’s lemma

|Λ(
−→
f )|2 ≤ Ex ν Eh,h′Ey T

y+h
1 f1 · T y+h′

1 f1 · T (y+h)2

2 f2 · T (y+h′)2

2 f2 + o(1)

Now we shift the variables x to x− yv1 which does not change the average but which amounts to
multiplying each factor with T−y

1 , thus we get

|Λ(
−→
f )|2 ≤ Ex Eh,h′ T h

1 ν · T h′
1 ν |Ey T

−y
1 ν · T−y

1 T
(y+h)2

2 f2 · T−y
1 T

(y+h′)2

2 f2|+ o(1).

By the polynomial forms condition ExEh,h′ T h
1 ν · T h′

1 ν = 1 + o(1) hence after one more application
of van der Courput’s lemma,

|Λ(
−→
f )|4 ≤ Ex Eh,h′ Ek,k′ T

h
1 ν · T h′

1 ν Ey T−y−k
1 ν · T−y−k′

1 ν·

· T−y−k
1 T

(y+h+k)2

2 f2 · T−y−k
1 T

(y+h′+k)2

2 f2 · T−y−k′

1 T
(y+h+k′)2

2 f2 · T−y−k′

1 T
(y+h′+k′)2

2 f2 + o(1).

Note that there are four quadratic polynomials in y however each have the same main term y2 thus

after shifting the variables x to x− y2v2, which amounts to multiplying each factor with T−y2

2 , all
exponents of the shift operators T1, T2 applied to the function f2 will be linear.

Doing this procedure in general leads to polynomial averages of the form

(3.4) ΛR(
−→
f ) := Eh1,...,htEx Ey∈[M ]

∏
α∈A

TRα(y,h1,...,ht;W )fα(x),
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where

(3.5) Rα(y, h1, . . . , ht;W ) =
l∑

j=1

Rj,α(y, h1, . . . , ht;W ) vj ,

and

TRα(y,h1,...,ht;W )fα(x) :=
l∏

j=1

T
Rj,α (y,h1,...,ht;W )
j fα(x)(3.6)

= fα(x+Rα(y, h1, . . . , ht;W )),

using notation similar to [2, 19]. For simplicity of notation we will wite Rα(h, y) suppressing the
dependence on W . To describe the PET procedure in our settings we will need several definitions.

Let R := {Rα(y, h) : α ∈ A} be a polynomial system with Rα ∈ Zd[y, h1, . . . , ht] being an integral
polynomial map for all α ∈ A. We will consider y as the primary variable of the polynomial maps
Rα(y, h) and h = (h1, . . . , ht) as parameters. We say that the y-degree of a polynomial map R(y, h)
is equal to d and write degy R(y, h) = d, if

R(y, h) = c(h) yd +Q(y, h),

where c(h) ̸= 0 and degy (Q(y, h)) < d, and Q(y, h) = 0 if d = 0. We extend the notion of general
position to polynomial systems R := {Rα(y, h) : α ∈ A} depending on parameters h = (h1, . . . , ht)
as follows.

Definition 3.1. We say that a polynomial system R := {Rα(y, h) : α ∈ A} is in general position
if for any two distinct nodes α, β, we have

(3.7) degy
(
πi(Rα −Rβ)

)
= degy (Rα −Rβ) for all 1 ≤ i ≤ d.

Moreover, if degy (Rα −Rβ) = 0 then πi(Rα) ̸= πi(Rβ).

For given nodes α, β ∈ A let dαβ := degy (Rα(y, h)−Rβ(y, h)) and write

(3.8) Rα(y, h)−Rβ(y, h) = cαβ(h) y
dαβ +Q

αβ
(y, h),

that is cαβ(h) ̸= 0 is the coefficient of leading term of the polynomial Rα(y, h) − Rβ(y, h) in the
y-variable. If dαβ = 0, then we set Q

αβ
= 0. Then (3.7) is equivalent to

(3.9) πi(cαβ(h)) ̸= 0 for all 1 ≤ i ≤ d, α, β ∈ A, α ̸= β.

An important note is that starting from an initial polynomial configuration P(y) = (P1(y)v1, . . . , Pl(y)vl)
in general position, all polynomial systems {Rα(h, y) : α ∈ A} will remain in general position during
the PET procedure, i.e. they will satisfy (3.7) or equivalently (3.9). To formalize this observation,
write A = A0 ∪ A1 where A0 = {α : degy Rα(y, h) = 0}, and define the doubling of the system R
as the polynomial system:

(3.10) R′ = {Rβ(h) : β ∈ A0} ∪ {Rβ(y + h1, h) : β ∈ A1} ∪ {Rβ(y + h2, h) : β ∈ A1}.

We index this system with the set of nodes A′ := A0 ∪ A1
1 ∪ A2

1, so that for nodes β1 ∈ A1
1 and

β2 ∈ A2
1 there correspond the polynomials

(3.11) Rβ1(y, h, h1) = Rβ(y + h1, h), Rβ2(y, h, h2) = Rβ(y + h2, h).

10



Lemma 3.1. Let R = {Rα(h, y)) : α ∈ A} be a polynomial system in general position. Then the
its doubling, that is the system R′ defined in (3.10)-(3.11) is also in general position.

Proof. We may assume without loss of generality that Rα0
= 0 for some fixed node α0, as equation

(3.7) is invariant under the translation Rα → Rα −Rα0
(α ∈ A). We write

Rα(y, h) = cα(h) y
dα +Q

α
(y, h),

where dα = degy Rα(y, h) and Q
α
(y, h) = 0 if dα = 0, that is when α ∈ A0. By (3.9), we have

(3.12) πi(cα(h)) ̸= 0, for all 1 ≤ i ≤ d.

Let α, β ∈ A\{0} be two distinct nodes. If both nodes are in A0, then R′
α = Rα and R′

β = Rβ so
(3.9) clearly holds for R′

α and R′
β . If say α ∈ Aσ

1 with σ = 1, 2, but β ∈ A0 then dα > 0 and dβ = 0.
Thus,

R′
ασ(y, h, hσ)−R′

β(y, h) = Rα(y + hσ, h)−Rβ(h) = cα(h)y
dα +Q′

αβ
(y, h, hσ),

with degy (Q
′
αβ

(y, h, hσ)) < dα and (3.9) holds.

Assume now that α and β are both in A1, and consider the difference

(3.13) R′
ασ(y, h, hσ)−R′

βτ (y, h, hτ ) = Rα(y + hσ, h)−Rβ(y + hτ , h),

for σ, τ = 1, 2. First we show that

R′
ασ(y, h, hσ)−R′

βτ (y, h, hτ ) = cαβ(h) y
dαβ +Q′

ασβτ (y, h),

with degy (Q
′
ασβτ )(y, h) < dαβ in all cases, except when dα = dβ, cα(h) = cβ(h) and σ ̸= τ .

Indeed, if dα ̸= dβ, say dα > dβ then the main term in the y-variable of the expression in (3.13) is
cα(h) y

dα = cαβ(h) y
dαβ , thus (3.9) holds.

If dα = dβ and σ = τ then the expression in (3.13) takes the form

Rα(y + hσ, h)−Rβ(y + hσ, h) = cαβ(h) (y + hσ)dαβ +Q
αβ

(y + hσ, h)

= cαβ(h) y
dαβ +Q′

αβ
(y, h, hσ),

where degy (Q
′
αβ

(y, h, hσ)) < dαβ and (3.9) holds again.

If dα = dbe, σ ̸= τ and cα(h) ̸= cβ(h) then its is easy to see from (3.8) that cαβ(h) = cα(h)− cβ(h)
and dαβ = dα = dβ. In this case

Rα(y + hσ, h)−Rβ(y + hτ , h) = cα(h) (y + hσ)dα − cβ(h) (y + hτ )dα +Q′
αβ

(y, h, h1, h2)

= (cα(h)− cβ(h)) y
dα +Q′′

αβ
(y, h, h1, h2),
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where degy (Q
′′
αβ

(y, h, h1, h2)) < dα and (3.9) holds.

Finally, if dα = dβ, cα(h) = cβ(h) but σ ̸= τ , then we use the expansion

Rα(y, h) = cα(h)y
dα + eα(h)y

dα−1 +Q
α
(y, h),

where degy (Qα
(y, h)) < dα − 1 or Q

α
(y, h) = 0 if dα = 1. We have

Rα(y + hσ, h)−Rβ(y + hτ , h) =

= cα(h)
(
(y + hσ)dα − (y + hτ )dα

)
+ eα(h)(y + hσ)dα−1 − eβ(h)(y + hτ )dα−1 +Q′

αβ
(y, h, h1, h2)

=
(
dα cα(h)(h

σ − hτ ) + eα(h)− eβ(h)
)
ydα−1 +Q′′

αβ
(y, h, h1, h2),

where degy (Q
′′
αβ
(y, h)) < dα − 1 or Q′′

αβ
(y, h) = 0 if dα = 1. Applying the projection πi to the

main term in the above expression, we have for all 1 ≤ i ≤ d,

(3.14) dα πi(cα(h)) (h
σ − hτ ) + πi(eα(h)− eβ(h)) ̸= 0.

Indeed, by our assumption πi(cα(h)) ̸= 0, hence the first term in (3.14) depends on the new
parameters h1 and h2 while the second term does not. Thus (3.9) holds again for the polynomials
R′

ασ(y, h, hσ) and R′
βτ (y, h, hτ ).

We will fix a distinguished node α0 and we say that a node α is non-linear if degy (Rα −Rα0
) > 1

and linear if degy (Rα −Rα0
) = 1 . We say that system R is in general position w.r.t. α0, if it is in

general position and if for any two distinct linear nodes α, β,

(3.15) degy (Rα −Rβ) = 1.

Lemma 3.2. Let R = be a polynomial system with distinguished node α0 and a nonlinear node α∗.
Then the its doubling, that is the system R′ defined in (3.10)-(3.11) is also in general position with
respect to the distinguished node α1

0.

Proof. Without loss of generality we may assume Rα∗ = 0 and hence degRα0 ≥ 2. By Lemma 3.1
it is enough to show that the main terms of the linear nodes with respect to the node α1

0 remain
distinct in the new system R′. Let β, γ be linear nodes w.r.t. α0. Write

Rβ(y, h) = Rα0
(y, h) + cβ(h)y + eβ(h) and similarly Rγ(y, h) = Rα0

(y, h) + cγ(h)y + eγ(h).

Clearly, β, γ both in A1. If β ̸= γ then cβ ̸= cγ thus clearly Rβ(y + hσ, h) − Rγ(y + hσ, h) is not
constant in y for σ = 1, 2. Now consider

Rβ(y + h1, h)−Rγ(y + h2, h) = Rα0
(y + h1, h)−Rα0

(y + h2, h) + (cβ(h)− cγ(h))y + eβγ(h).

Taking a derivative w.r.t the y-variable, we have

∂y(Rβ(y + h1, h)−Rγ(y + h2, h)) = ∂y(Rα0
(y + h1, h)−Rα0

(y + h2, h)) + (cβ − cγ)(h) ̸= 0,

as the above expression must depend on both h1 and h2 as α0 is a non-linear node. If β = γ then
we have again,

∂y(R
′
β1(y + h1, h)−R′

β2(y + h2, h)) = ∂y(Rα0
(y + h1, h)−Rα0

(y + h2, h)) ̸= 0.
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Following [2] we will assign a weight matrix WR =
(
wj,k

)
to a polynomial system R = {Rα(h, y) :

α ∈ A} as follows. Let Rj := (Rj,α; α ∈ A) and define Rj to be the set of those polynomials
Rj,α(h, y) which satisfy

(3.16) degy (Rα,j) ≥ 1, but degy (Rj′,α) = 0, for all j < j′ ≤ l.

Let D denote the maximum degree in y of the polynomials Rj,α(y, h). For given 1 ≤ j ≤ l and
1 ≤ k ≤ D define the entry wj,k as the number of equivalence classes of the polynomials Rj,α ∈ Rj of
y-degree k, where two polynomials Rj,α and Rj,α′ are equivalent if they have identical leading terms
in the y-variable. The weight matrix WR(α∗) =

(
wj,k(α

∗)
)
of the system (Rα : α ∈ A) with respect

to a specific node α∗ is defined as the weight matrix of the shifted system {Rα − Rα∗ : α ∈ A} .
Note that in the scalar case l = 1 (and v1 = 1) this agrees with definition of the weight vector
(wk(α

∗))1≤k≤D given in [19].

We will estimate averages of the form (3.4) corresponding to systems (R,
−→
f ) := {(Rα, fα) : α ∈ A}

where |fα| ≤ ν(d) for all α ∈ A. We define a node α inactive if fα = ν(d) and active otherwise. The

weight matrix WR,
−→
f
(α∗) of the system (R,

−→
f ) is defined as the weight matrix of the restricted

polynomial system (Rα −Rα∗ : α ∈ A1), where A1 denotes the set of active nodes.

We define the ordering of l×D weight matrices by reversed lexicographic ordering; we write W′ ≺ W
if there exist 1 ≤ j ≤ l ≤ l, 1 ≤ k ≤ D so that w′

j,k < wj,k but w′
j′,k′ = w′

j′,k′ for j < j′ or j = j′

and k < k′. We remark that any ordered chain of weight matrices W1 ≻ W2 ≻ . . . terminates in
finitely many steps.

The key proposition of the PET procedure, which is a straightforward multidimensional extension
of Proposition 5.14 in [19], is the following.

Proposition 3.1. Let (R,
−→
f ) = {(Rα, fα) : α ∈ A} be a polynomial system in general position

with distinguished node α0. Assume the system R is in general position with respect to α0, and
there is an active non-linear node α∗.
Then there exists a polynomial system (R′,

−→
f ′) = {(R′

α′ , f ′
α′) : α′ ∈ A′} in general position with

respect to a distinguished node α′
0, and an active node α′ such that,

(3.17) WR′(α′) ≺ WR(α
∗).

and

(3.18) |ΛR(
−→
f )|2 ≪ |ΛR′(

−→
f ′)|+ oN→∞(1),

Moreover f ′
α0

= fα0, and for each α′ ∈ A′ one has that f ′
α′ = fα for some α ∈ A, or f ′

α′ = ν(d).

Proof. Shifting the system R by Rα∗ , which amounts to changing the polynomials Rα → Rα −Rα∗ ,
we may assume that Rα∗ = 0, where α∗ is a fixed non-linear node with respect to α0. Clearly the
shifted system will remain in general position.

Write A = A0 ∪ A1, where A0 = {β ∈ A : degy (Rβ) = 0} and A1 := A\A0. Accordingly, write

G(x, h) :=
∏
β∈A0

TRβ(h)fβ(x)
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and note that
|G(x, h)| ≤ H(x, h) :=

∏
β∈A0

TRβ(h) ν
(d)
β (x).

Then by the polynomial forms condition we have that,

(3.19) Eh∈[H]t Ex∈XH(x, h) = 1 + o(1).

Let

(3.20) F (x, y, h) :=
∏
β∈A1

TRβ(y,h)fβ(x),

then

| ΛP(
−→
f ) | ≤ Eh∈[H]t Ex∈X H(x, h) | Ey∈[M ]F (x, y, h) |(3.21)

≤ Eh∈[H]t Ex∈X H(x, h)Ey∈[M ] | Eh∈[H] F (x, y + h, h) | +o(1).

Here the o(1) term is coming from shifting the variables y → y + h causing an error term

O((log N)CR H/M) = O((log N)−
√
L/2 ) = o(1) if L is chosen sufficiently large with respect

to R. Applying the Cauchy-Schwarz inequality in the h-variable, using (3.19), we get

| ΛP(
−→
f ) |2 ≤ E(h,h1,h2)∈[H]t+2Ex∈X Ey∈[M ]H(x, h)F (x, y + h1, h)F (x, y + h2, h) + o(1)(3.22)

:= ΛR′(
−→
f ′) + o(1),

where

(3.23) R′ = {Rβ(h) : β ∈ A0} ∪ {Rβ(y + h1, h) : β ∈ A1} ∪ {Rβ(y + h2, h) : β ∈ A1}.

We index this system with the set of nodes A′ := A0 ∪ A1
1 ∪ A2

1, so that for the nodes β1 ∈ A1
1 and

β2 ∈ A2
1 we have the polynomials

Rβ1(y, h, h1, h2) = Rβ(y + h1, h), Rβ2(y, h, h1, h2) = Rβ(y + h2, h)

and functions
f ′
β1(x) = f ′

β2(x) = fβ(x).

Note that R′ is the doubling of the system R and hence by Lemma 3.1 and Lemma 3.2 it is in
general position with respect to the distinguished node α1

0. The doubling Rj,α(y, h) → Rj,α(y+hσ, h)
(σ = 1, 2) does not change the main terms of the polynomials Rj,α(y, h) in the y-variable, hence
WR′ = WR. In the above doubling procedure we do not activate inactive nodes but we may
deactivate some active nodes, in fact those the active nodes α such that degy (Rα) = 0. Thus
WR′,

−→
f ′ ≺ WR,

−→
f

or WR′,
−→
f ′ = WR,

−→
f
.
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Let wj0k0 be the first non-zero entry of the weight matrix WR,
−→
f
, such an entry must exist as α0

is a nonlinear node. This means there is a polynomial Rj0,α ∈ Rj0 such that degy (Rj0α) = k0 but

Rj = ∅ for j < j0 and degy (Rj0β) ≥ k0 for all Rj0,β ∈ Rj0 .

Also degy (Rj,α) = 0 for j > j0 by the definition of the reduced class of polynomials Rj0 .

We claim that wR′,
−→
f ′(α

1) ≺ wR′,
−→
f ′ and hence WR′,

−→
f ′(α

1) ≺ WR,
−→
f
, where wR′,

−→
f ′(α

1) is the

weight matrix of the shifted system {R′
α′ −R′

α1 : α′ ∈ A′}. Indeed if j > j0 then degy (R′
j,α1) = 0

thus we do not change the entries w′
j,k. If k > k0 then again we do not change the entries w′j0, k as

they depend only on the main terms of polynomials in R′
j0

of degree k. However we reduce the entry

w′
j0,k0

by 1 when we subtract the polynomial Rj0,α1(y, h) from the polynomials Rj0,α′(y, h) ∈ Rj0

as the equivalence class of Rj0,α1(y, h) vanishes. We may get new equivalence classes of smaller
degrees than k0 but that does not affect the ordering of the matrices. This proves (3.17) with and
(3.18) follows from (3.22).

We have shown, after shifting the system so that Rα0
= 0,

(3.24) |Λ(f)|2s ≤ Eh,y,xfα0(x)
∏

α∈Anl

TRα(h,y)ν(d)(x)×
∏
α∈Al

T bα(h)y+cα(h)fα(x) + o(1),

where bα(h), cα(h) are integral polynomial maps dependent on shift parameters h = (h1, . . . , ht).
We use Al to denote the active nodes (l stands for linear), and we let Anl denote the inactive nodes.
Note that polynomial system R = {Rα(y, h), α ∈ Anl}

⋃
{Rα(y, h) = bα(h)y + cα(h)} is in general

position in the sense of (3.7). In particular, πi(bα) ̸= 0 for all i ∈ [d] and α ∈ A.

We will show that the expression in (3.24) is bounded by

≤
(
Eh Ex,y(0),y(1)

∏
ω∈{0,1}|Al|

T
∑

γ∈Al
y
(ωγ )
γ bγ(h) fα0(x)

)2−|Al|

+ o(1)(3.25)

= ∥fα0∥□H,M (bγ : γ∈Al)

i.e. the average of the local Gowers box norms ∥fα0∥□(bγ(h): γ∈Al) +o(1).

The main tool in this step is the weighted generalized von Neumann inequality [19, Appendix A].
To this end, we introduce new shift parameters y = (yα)α∈Al

and define Q
0
(y) :=

∑
α∈Al

bα(h) yα .
Then, after shifting y by −

∑
α∈Al

yα and shifting the polynomial system by Q
0
(y), the right-hand

side of (3.24) becomes

Eh Ey,y,x T
Q

0
(y) fα0(x)

∏
α∈Anl

T
Q

0
(y)+Rα

(
h,y−

∑
γ∈Al

yγ
)
ν(d) (x)

×
∏
α∈Al

T
bα(h)y+

∑
γ∈Al

(bγ(h)−bα(h))yγ+cα(h)fα(x) + o(1).(3.26)

Notice that since we simply shifted the system, it is still in general position as a system in the
variables h, y and hence will satisfy (2.7) and the polynomial forms condition (2.8) applies.
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Let

f0,x,h,y(y) = TQ
0
(y)fα0(x)

∏
α∈Anl

T
Q

0
(y)+Rα

(
h,y−

∑
γ∈Al

yγ
)
ν(d) (x) ,

fα,x,h,y(y) = T
bα(h)y+

∑
γ∈Al

(bγ(h)−bα(h))yγ+cα(h)fα (x) ,

ν
(d)
α,x,h,y(y) = T

bα(h)y+
∑

γ∈Al
(bγ(h)−bα(h))yγ+cα(h)ν(d) (x) .

With this in mind, (3.26) becomes

Eh,y,x Ey f0,x,h(y)
∏
α∈Al

fα,x,h(y).

By design, 0 ≤ fα,x,h,y ≤ ν
(d)
α,x,h,y pointwise and fα,x,h(y) is independent of yα for every α ∈ Al.

Thus, we may apply the generalized weighted von Neumann theorem in the y-variable [19, Appendix
A]:

(3.27) Eh,y,x Ey f0,x,h,y(y)
∏
α∈Al

fα,x,h(y) ≤ Eh,y,x ||f0,x,h,y||□Al (ν(d))

∏
α∈Al

||ν(d)α,x,h,y||
1/2

□Al\{α} .

Thus by Hölder’s inequality,

(3.28) Eh,y,x Ey f0,x,h,y(y)
∏
α∈Al

fα,x,h(y) ≤
(
Eh,y,x ||f0,x,h,y||2

|Al|

□Al (ν(d))

)2−|Al|

,

as by the polynomial forms condition, we have for all α ∈ Al

Eh,x||ν
(d)
α,x,h,y,·||

2|Al|−1

□Al\{α} = Eh,x,y Ey(0),y(1)

∏
ω∈{0,1}Al\{α}

T
bα(h)y+

∑
γ∈Al

(bγ(h)−bα(h)y
(ωγ )
γ +cα(h)ν(d) (x)

= 1 + o(1).

Note that,

(3.29) Eh,y,x||f0,x,h,y,·||2
|Al|

□Al (ν(d))
= Eh,x Ey(0),y(1)

∏
ω∈{0,1}Al

TQ
0
(y(ω))f(x) w(h, x, y(0), y(1)),

where

w(h, x, y(0), y(1)) := Ey

∏
α∈Anl

∏
ω∈{0,1}Al

T
Q

0
(y(ω))+Rα

(
h,y−

∑
γ∈Al

y
(ωγ )
γ

)
ν(d) (x)

×
∏
α∈Al

∏
ω(α)∈{0,1}Al\{α}

T
bα(h)y+

∑
γ∈Al

(bγ(h)−bα(h))y
(ω

(α)
γ )

γ +cα(h)ν(d) (x) .(3.30)

Notice that the right-hand side of (3.29) is a weighted parallelogram average, and, ignoring the
weight w, we end up with an average of local Gowers norms:

Eh,x Ey(0),y(1)E
∏

ω∈{0,1}Al

TQ
0
(y(ω))fα0(x) = Eh,x Ey(0),y(1)

∏
ω∈{0,1}Al

T
∑

γ∈Al
y
(ωγ )
γ bγ(h)fα0 (x)

= Eh ∥fα0∥2
|Al|

□(bγ(h): γ∈Al)
.
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Thus, it suffices to prove

(3.31) E
h,x,y(0),y(1)

∏
ω∈{0,1}Al

TQ
0
(y(ω))fα0(x) (w(h, x, y

(0), y(1))− 1) = o(1)

By the Cauchy-Schwarz inequality and the bound |fα0 | ≤ ν(d), the square of the left-hand side of
(3.31) is at most

E
h,x,y(0),y(1)

∏
ω∈{0,1}Al

TQ
0
(y(ω))ν(d) (x)

(
w(h, x, y(0), y(1))− 1

)2
= E

h,x,y(0),y(1)

∏
ω∈{0,1}Al

TQ
0
(y(ω))ν(d)(x)

(
w(h, x, y(0), y(1))2 − 2w(h, x, y(0), y(1)) + 1

)
= (1 + o(1))− 2(1 + o(1)) + (1 + o(1)) = o(1),

where we have repeatedly applied the polynomial forms condition to the coordinate projections of
the polynomials appearing in (3.29)-(3.30), in the h, x, y(0), y(1) and y variables. To justify this, let
i ∈ [d] be fixed and consider the polynomials

(3.32) xi + πi
(
Q

0
(y(ω), h)

)
=
∑
α∈Al

πi(bα(h)) y
(ωα)
α ,

for ω ∈ {0, 1}Al . The polynomials,

(3.33) xi +
∑
α∈Al

πi(bα(h)) y
(ωα)
α + πi

(
Rα′ (h, y −

∑
γ∈Al

y
(ωγ)
γ )

)
,

for α′ ∈ Anl and ω ∈ {0, 1}Al , and the polynomials

(3.34) xi + πi(bα(h)) y +
∑
γ∈Al

πi
(
(bγ − bα)(h)

)
y
(ω

(α)
γ )

γ + πi(cα(h)),

for α ∈ Al, ω
(α) ∈ {0, 1}Al\{α}.

Since πi(bα(h)) ̸= 0, the polynomials in (3.32) are distinct and satisfy (2.7). The polynomials
in (3.33) are distinct for the same reason, and they are also distinct from the polynomials in
(3.32) as either degy Rα′ (h, y) ≥ 1 hence they depend also on the y-variable, or πi(Rα′) ̸= 0 hence
contain a term depending only on the variables h. Finally the polynomials in (3.34) are distinct as
πi
(
(bγ − bα)(h)

)
̸= 0 for γ ≠ α, and they are distinct from the polynomials in (3.32)-(3.33), as they

are independent of the y
(0)
α , y

(1)
α variables but depend on the y-variable.

This shows the validity of (3.25). Since our initial family of functions is f1, . . . , fl we have that
α0 = k and fα0 = fk, and after re-indexing and renaming the variables, we may write

(bγ(h) : γ ∈ Al) = (Qk
j
(hk) : j ∈ [sk])

thus we have for all 1 ≤ k ≤ l,

(3.35)
∣∣ΛP,V (

−→
f )
∣∣ ≤ ||fk||2

−Sk

□H,M (Qk
j
(hk): j∈[sk])

+ o(1).
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Note that the norms on right side of (3.35) depend on k, however they can be majorized by a
single local polynomial box norm using a simple concatenation property. Indeed one can define
the concatenation of two polynomial systems Q = (Q

1
(h), . . . , Q

s
(h) : h ∈ [H]t) and Q′ =

(Q′
1
(h′), . . . , Q

s′
(h′) : h′ ∈ [H]t

′
) as Q ⊕ Q′ = (Q

1
(h), . . . , Q

s
(h), Q′

1
(h′), . . . , Q

s′
(h′) : (h, h′) ∈

[H]t+t′ . Inductively one defines the concatenation Q = Q1 ⊕ . . .⊕Ql of more that two polynomial
systemsQ1, . . . ,Ql. The following “concatenation lemma” follows from simple application of Hölder’s
and the Cauchy-Schwarz inequality, see [19, Lemma A.3]

Lemma 3.3. Let Q = Q1 ⊕ . . .⊕Ql. Then one has for any f : X → R

(3.36) ||f ||□H,M (Q) ≥ ||f ||□H,M (Qk),

for all 1 ≤ k ≤ l.

Note that if Qk is in general position and moreover if πi(Q
k
j
) ̸= 0 for all i ∈ [d], k ∈ [l] and j ∈ [sk]

then Q is also in general position. This holds in our case πi(bα) ̸= 0 for all α ∈ Al. Since |f |k ≤ ν(d)

and ∥ν(d)∥□H,M (Qk) = 1 + o(1) by the polynomial forms condition as the system Qk is in general

position. We have our key estimate by Lemma 3.3 and inequality (3.35).

Corollary 3.1. ( generalized von-Neumann inequality)
Let P = (P1(y)v1, . . . , Pl(y)vl) be a polynomial system in general position. Then there exist t, s, S ≥ 1
and a polynomial system Q = (Q

1
, . . . , Q

s
) in general position, satisfying π(Q

j
) ̸= 0, such that

(3.37)
∣∣ΛP,V (

−→
f )
∣∣ ≤ min

1≤k≤l
||fk||2

−S

□H,M (Q
1
,...,Q

s
) + o(1).

4 Dual functions and the main decomposition.

In this section we prove the crucial decomposition (1.6) following [20] which combines Gowers
approach to decompositions theorems based on the Hahn-Banach theorem [8]. The starting point is
the show the orthogonality of ν(d)−1 to products of so-called dual functions associated to polynomial
averages of local box norms.

Definition 4.1. Let Q = (Q
1
, . . . , Q

s
) : [H]t → Zsd be a polynomial map where Q

j
∈ Zd[h1, . . . , ht].

Let fω : X → R, ω ∈ {0, 1}s\{0} be a family of functions. We define the dual function of the family
of functions (fω)ω∈{0,1}s\{0}, as

(4.1) DQ(fω)(x) := Eh∈[H]t Ey(0),y(1)∈[M ]s

∏
ω∈{0,1}s,ω ̸=0

fω
(
x+ y

(ω1)
1 Q

1
(h) + . . .+ y(ωs)

s Q
s
(h)
)
.

If fω = f for all ω ∈ {0, 1}s\{0} then we write DQ(f) and refer to DQ(f) as the dual function of
the function f .

This means that for fixed h and fixed y(0) = (y
(0)
1 , . . . , y

(1)
s ), y(1) = (y

(1)
1 , . . . , y

(1)
s ) we take the

product of the functions fω evaluated at the vertices x+ y
(ω1)
1 Q

1
(h) + . . .+ y

(ωs)
s Q

s
(h) forming a

parallelepiped as ω = (ω1, . . . , ωs) runs through all {0, 1}s\{0}, where the vectors Q
1
(h), . . . , uQs(h)

give the directions of the side vectors of the parallelepiped, and then we sum the products for all
such parallelepipeds was y(0), y(1) are running through [M ]s and h through [H]t. The terminology
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dual function is originated in [9] for global Gowers norms, and is due to the fact that the inner
product,

(4.2) ⟨f,DQ(f)⟩ := Ex∈Xf(x)DQ(f)(x) = Eh∈[H]t ∥f∥2
s

□M (Q
1
(h),...,Q

s
(h)).

The Gowers type local box-norm inner product of a family of functions (fω)ω∈{0,1}s of scale M and
directions u1, . . . , us, is defined as

(4.3) ⟨fω⟩□M (u1,...,us)
:= Ex∈XEy(0),y(1)∈[M ]s

∏
ω∈{0,1}s

fω
(
x+ y

(ω1)
1 u1 + . . .+ y(ωs)

s us
)
.

Let us recall a basic inequality referred to as the Gowers-Cauchy-Schwarz inequality for box norms
that is well-known in various forms see e.g.[19, Appendix B].

Lemma 4.1. One has

(4.4)
∣∣⟨fω⟩□M (u1,...,us)

∣∣ ≤ ∏
ω∈{0,1}s

∥fω∥□M (u1,...,us)

Proof. Let us write.
fω,x(y1, . . . , ys) := fω(x+ y1u1 + . . .+ ysus).

For a fixed x ∈ X, we show

(4.5)
∣∣Ey(0),y(1)∈[M ]s

∏
ω∈{0,1}s

fω,x(y
(ω1)
1 , . . . , y(ωs)

s )
∣∣ ≤ ∏

ω∈{0,1}s
∥fω,x∥□M ,

where for a function f : X → R,

∥f∥2s□M
= Ey(0),y(1)∈[M ]s

∏
ω∈{0,1}s

f(y
(ω1)
1 , . . . , y(ωs)

s ).

This is easy to see by repeated application of the Cauchy-Schwarz inequality. Indeed, separating

the last variables and writing y(0) = (y(0)
′
, y

(0)
s ) y(1) = (y(1)

′
, y

(1)
s ), one may write

⟨fω⟩□M (u1,...,us)
=

Ey(0)
′
,y(1)

′
(
E
y
(0)
s

∏
ω′∈{0,1}s−1

f(ω′,0)(y
(ω1)
1 , . . . , y

(ωs−1)
s−1 , y(0)s )

) (
E
y
(1)
s

∏
ω′∈{0,1}s−1

f(ω′,1)(y
(ω1)
1 , . . . , y

(ωs−1)
s−1 , y(1)s )

)
Then by the Cauchy-Schwarz inequality

⟨fω⟩2□M (u1,...,us)
≤(

Ey(0)
′
,y(1)

′ E
y
(0)
s ,y

(1)
s

∏
ω∈{0,1}s

f(ω′,0)(y
(ω1)
1 , . . . , y

(ωs−1)
s−1 , y(0)s ) f(ω′,0)(y

(ω1)
1 , . . . , y

(ωs−1)
s−1 , y(1)s )

)
(
Ey(0)

′
,y(1)

′ E
y
(0)
s ,y

(1)
s

∏
ω∈{0,1}s

f(ω′,1)(y
(ω1)
1 , . . . , y

(ωs−1)
s−1 , y(0)s ) f(ω′,1)(y

(ω1)
1 , . . . , y

(ωs−1)
s−1 , y(1)s )

)
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Notice that in each factors the functions fω depend only on the first s−1 components of ω. Repeating
the procedure in the other s− 1 variables give (4.5). Then by Hölder’s inequality left side of (4.3)
is estimated by

⟨fω⟩2
s

□M (u1,...,us)
=

(
Ex Ey(0),y(1)∈[M ]s

∏
ω∈{0,1}s

fω,x(y
(ω1)
1 , . . . , y(ωs)

s )

)2s

≤
(
Ex

∏
ω∈{0,1}s

∥fω,x∥□M

)2s ≤ ∏
ω∈{0,1}s

(
Ex ∥fω,x∥□M

)2s)
=

∏
ω∈{0,1}s

∥fω∥2
s

□M (u1,...,us)
.

The following orthogonality property is crucial for the decomposition (1.6).

Proposition 4.1. Let K, s ≥ 1 and for 1 ≤ k ≤ K let fk
ω : X → [−1, 1] be given for ω ∈ {0, 1}s\{0}.

Let Q = (Q
0
, Q

1
, . . . , Q

s
), Q

0
= 0, Q

j
∈ Zd[h] be a family of polynomial maps in general position,

satisfying condition (2.7) for all 1 ≤ i ≤ d and 1 ≤ j < j′ ≤ s. Then one has

(4.6) ⟨(ν(d) − 1),

K∏
k=1

DQ(f
k
ω)⟩ := Ex∈X

(
ν(d)(x)− 1

)
·

K∏
k=1

DQ(f
k
ω)(x) = o(1),

where the implicit constant may depend on K, s and the polynomial map Q,

Proof. By expanding the product of the dual functions, we have

(4.7)
K∏
k=1

DQ(f
k
ω) (x) = Eh1,...,hk

E
y
(0)
1 ,...,y

(0)
k

y
(1)
1 ,...,y

(1)
K

K∏
k=1

∗∏
ω∈{0,1}s

fk
ω

(
x+ y

(ω1)
k1 Q

1
(hk) + . . .+ y

(ωs)
ks Q

s
(hk)

)
,

where we have written
∏∗

ω for the restricted product
∏

ω∈{0,1}s,ω ̸=0 for simplicity of notations.

Let BK,t(H) be the set of those k-tuples of vectors (h1, . . . , hK) ∈ [H]kt such that πi(Qj
(hk)) = 0

for some i ∈ [d], j ∈ [s] and k ∈ [K]K. Then |BK,t(H)| ≪ Hkt−1 by the Schwarz-Zippel lemma,
see [19, Lemma D.3], since πi(Qj

(h)) is not zero by our assumption. Thus the contribution of the

K-tuples that are in Bk,t(H) to the right side of (4.4) is O(H−1) = o(1).

Let (h1 . . . , hK) /∈ Bk,t(H) be a fixed K-tuple. We estimate

(4.8) Ex

(
ν(d)(x)− 1

)
E
y
(0)
1 ,...,y

(0)
k

y
(1)
1 ,...,y

(1)
K

K∏
k=1

∗∏
ω∈{0,1}s

fk
ω

(
x+ y

(ω1)
k1 Q

1
(hk) + . . .+ y

(ωs)
ks Q

s
(hk)

)
.

Note that the product is taken over the union of K-distinct parallelepipeds with vertices x +

y
(ω1)
k1 Q

1
(hk) + . . . + y

(ωs)
ks Q

s
(hk). We may embed these K parallelepipeds into a Ks-dimensional

parallelepiped with vertices of the form

x+

s∑
j=1

K∑
k=1

y
(ωk1)
k1 Q

1
(hk) + . . .+ y

(ωks)
ks Q

s
(hk),
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corresponding to Ω = (ω1, . . . , ωK), ωk = (ωk1, . . . , ωks) ∈ {0, 1}s. Define fΩ = 1 unless Ω =
(0, . . . , 0, ω, 0, . . . , 0), i.e. when ωj = 0 for all j ≠ k and ωk = ω; in which case let fΩ = fk

ω . In other
words, to all the remaining vertices of Ks-dimensional parallelepiped we attach weight 1. Then the
expression in (4.8) may be written as

Ex

(
ν(d)(x)− 1

)
E
y
(0)
1 ,...,y

(0)
K ,y

(1)
1 ,...,y

(1)
K

∏
Ω∈{0,1}Ks

fΩ
(
x+

K∑
k=1

s∑
j=1

y
(ωkj)
kj Q

j
(hk)

)
(4.9)

=
〈
ν(d) − 1, fΩ

〉
□M (Q

j
(hk): j∈[s],k∈[K])

.

By the Gowers-Cauchy-Schwarz inequality for box norms we have that

(4.10)
∣∣〈ν(d) − 1, fΩ

〉
□M (Q

j
(hk): j∈[s],k∈[K])

∣∣ ≤ ∥ν(d) − 1∥□M (Q
j
(hk): j∈[s],k∈[K]),

as |fΩ| ≤ 1 and hence ∥fΩ∥□M (Q
j
(hk): j∈[s],k∈[K]) ≤ 1 for all Ω ∈ {0, 1}Ks. Thus by Hölder’s

inequality the left side of (4.7) is estimated by

Eh1,...,hk
∥ν(d) − 1∥□M (Q

j
(hk): j∈[s],k∈[K]) ≤

(
Eh1,...,hK

∥ν(d) − 1∥2Ks

□M (Q
j
(hk): j∈[s],k∈[K])

) 1

2Ks

= o(1),

by the polynomial forms condition (2.8) applied in the variables xi, y
(σ)
kj , hk (i ∈ [d], j ∈ [s], k ∈ [K])

to the family of polynomials xi +
∑K

k=1

∑s
j=1 y

(ωkj)
kj πi

(
Q

j
(hk)

)
.

Using the orthogonality property (4.6) one can obtain the crucial decomposition (1.6) of an un-
bounded function 0 ≤ f ≤ ν(d) via an abstract decomposition theorem which appears implicitly in
[9] and is stated in various essentially explicit forms in [17, 8, 20]. We recall the statement from [20]
and for the sake of completeness provide a proof, which is a slight modification of an argument of
Gowers [8, Theorem 4.8].

Theorem D. (Dense model theorem [20])
Let ε > 0 and let F be a set of bounded functions F : X → [−1, 1]. Then there exists a constant
C > 0 and a constant η > 0 depending only on ε such that the following holds; If a function
ν : X → R≥0 obeys the bound

(4.11) Ex∈X
(
ν(x)− 1

)
F1 · . . . · FK(x) ≤ η,

for all K ≤ ε−C and Fj ∈ F , then to every function 0 ≤ f ≤ ν there exists a function 0 ≤ g ≤ 2

such that

(4.12)
∣∣Ex∈X

(
f(x)− g(x)

)
F (x)

∣∣ ≤ ε,

for all F ∈ F .

This means that if the function ν − 1 is approximately orthogonal to long products of functions
Fi ∈ F then every function 0 ≤ f ≤ ν can be approximated by a bounded function g so that f − g
is approximately orthogonal to all function F ∈ F . If 1 ∈ F (as in most cases of interest) then f
and g has approximately the same average, and g is referred to as a dense model of f for the family
of functions F .
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Proof. Let ϵ > 0, and define J : R → R by J(x) = x+|x|
2 . By the Weirerstrass approximation

theorem, there exists a polynomial P (x) =
∑j

i=0 aix
i such that

(4.13) |P (x)− J(x)| < 1

8

for all x ∈ [−2ε−1, 2ε−1]. Let C be large enough that ε−C > j, and let η = 1
4

(∑j
i=0 |ai|(2ε−1)i

)−1
.

Let ν : X → R≥0 be a function satisfying (4.11), and suppose for the sake of contradiction there
exists a function 0 ≤ f ≤ ν which cannot be written as g + h where 0 ≤ g ≤ 2 and

sup
F∈F

∣∣Ex∈Xh(x)F (x)
∣∣ ≤ ε.

By the Hahn-Banach theorem (specifically [8, Corollary 3.2] ), there exists ϕ : X → R such that
⟨f, ϕ⟩ > 1, ⟨g, ϕ⟩ < 1/2 for every 0 ≤ g ≤ 1, and ⟨h, ϕ⟩ ≤ ε−1 for every h : X → R such that

sup
F∈F

∣∣Ex∈Xh(x)F (x)
∣∣ ≤ 1.

The above condition forces ϕ to be in the subspace spanned by the functions F ∈ F , and then by
[8, Corollary 3.5], we may write ϕ =

∑s
i=1 λiFi where F1, . . . , Fs ∈ F and

(4.14)

s∑
i=1

|λi| < 2ε−1.

By (4.11) and some manipulation, we have

∣∣⟨ν − 1, Pϕ⟩
∣∣ ≤ j∑

i=0

|ai|
∣∣〈ν − 1,

( s∑
k=1

λkFk

)i〉∣∣(4.15)

≤ η

j∑
i=0

|ai|

(
s∑

k=1

|λk|

)i

≤ η

j∑
i=0

|ai|
(
2ε−1

)i
= 1/4.

Since ⟨g, ϕ⟩ ≤ 1/2 for every 0 ≤ g ≤ 1, we have ⟨1, Jϕ⟩ ≤ 1/2. By (4.14), it is clear that |ϕ| < 2ε−1

pointwise, and so by (4.13), ||Pϕ − Jϕ||∞ ≤ 1/8. Combining these facts, we have ⟨1, Pϕ⟩ ≤ 5/8.
Hence, by (??), ⟨ν, Pϕ⟩ ≤ 7/8. Finally, once again using the fact that ||Pϕ− Jϕ||∞ ≤ 1/8, we have
⟨ν, Jϕ⟩ ≤ 1. But then

⟨f, ϕ⟩ ≤ ⟨f, Jϕ⟩ ≤ ⟨ν, Jϕ⟩ ≤ 1,

contradicting the fact that ⟨f, ϕ⟩ > 1.

Applying Proposition 4.1 and Theorem D to the family F := {DQ(fω)ω∈{0,1}s\{0}, fω : X → [−1, 1]}
where Q = (Q

0
, Q

1
, . . . , Q

s
) is a family of integral polynomials, we have
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Corollary 4.1. Let s, t ≥ 1 and let Q = (Q
0
, Q

1
, . . . , Q

s
), Q

0
= 0, Q

j
∈ Zd[h1, . . . , ht] be a family

of polynomials in general position. Given ε > 0, if N ≥ N(Q, t, s, ε) are sufficiently large then to
every function 0 ≤ f ≤ ν(d) there exists a function 0 ≤ g ≤ 2 s.t.

(4.16)
∣∣Ex∈X

(
f(x)− g(x)

)
DQ(fω)(x)

∣∣ ≤ ε,

for all families of functions
(
fω
)
ω∈{0,1}s\{0}, fω : X → [−1, 1].

At this point, for the function 0 ≤ fA ≤ ν(d) we may obtain a decomposition fA = g + h with
0 ≤ g ≤ 2 and the function h satisfying

(4.17)
∣∣Ex∈Xh(x)DQ(fω)(x)

∣∣ ≤ ε,

for all dual functions DQ(fω) corresponding to bounded functions fω : X → [−1, 1]. Note that h

may not be bounded independently of N but |h| ≤ ν(d) + 2. If (4.12) would hold for DQ(h) i.e.
when fω = h for all ω ∈ {0, 1}\{0}, then we would have

(4.18) ∥h∥□H,M (Q
1
,...,Q

s
) ≤ ε.

Hence by (1.5) and multi-linearity

(4.19) ΛP,V (fA, . . . , fA) = ΛP,V (g, . . . , g) +O(εc) + o(1),

where c > 0 is a constant depending on the initial data P and V . The Bergelson-Liebman theorem
[2] implies (see next section),

(4.20) ΛP,V (g, . . . , g) ≥ c(δ) + o(1),

where c(δ) > 0 is a constant depending on the initial data but is independent of N . Thus choosing
ε > 0 sufficiently small we have that ΛP,V (fA, . . . , fA) > 0 which implies our main result.

The idea that the bounded functions fω can be replaced by the unbounded function h appeared
first in [3]. The proof is essentially the same as that of [20, Theorem 11] and include it here only for
the sake of completeness. Under the same conditions as in Proposition 4.1, we have

Proposition 4.2. Let ε > 0 and let h : X → R s.t. |h| ≤ ν(d) + 2. If

(4.21)
∣∣Ex∈X h(x)DQ(fω)(x)

∣∣ ≤ ε+ o(1),

for all bounded families of functions (fω)ω∈{0,1}s\{0}, fω : X → [−1, 1], then

(4.22) ∥h∥□H,M (Q
1
,...,Q

s
) ≤ εC + o(1)

for some constant C > 0 that is independent of ε.

Proof. By multi-linearity it is enough to show that

(4.23) ⟨fω⟩□H,M (Q
1
,...,Q

s
) ≪ εC + o(1)

whenever |fω| ≤ 1 or |fω| ≤ ν(d), assuming that at least one of the functions fω = h. We prove
(4.23) on the number n unbounded functions fω.
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If n = 1 we may assume f0 = h and (4.23) follows from (4.20). If n ≥ 2 we may assume again
that |f0| ≤ ν(d) is unbounded and write

∣∣⟨fω⟩□(Q)

∣∣ ≤ Exν
(d)(x)|DQ(fω)

∣∣. By the Cauchy-Schwarz
inequality, we have∣∣⟨fω⟩□H,M (Q

1
,...,Q

s
)

∣∣2 ≤ ExD
2
Q(fω)(x) + Ex

(
ν(d)(x)− 1

)
D2

Q(fω)(x) := I + II.

To estimate the first term note that

ExD
4
Q(fω)(x) ≤ ExD

4
Q(ν

(d))(x) ≪ 1,

by the polynomial forms condition and the assumption that the family Q = (Q
1
, . . . , Q

s
) is in

general position. On the other hand

Ex

∣∣DQ(fω)(x)
∣∣ ≤ εC + o(1),

as it is equivalent to the fact that

ExDQ(fω)(x) g(x0 ≤ εC + o(1),

uniformly for all functions |g| ≤ 1 which follows from the inductive hypothesis on the number of
unbounded factors. Then I ≤ εC + o(1) by interpolation.

For the second term we may write again,

D2
Q(fω)(x) = Eh,h′ E

y
(0)
1 ,y

(1)
1

y
(0)
2 y

(1)
2

∗∏
(ω,ω′)∈{0,1}2s

fω
(
x+

s∑
j=1

y
(ωj)
1j Q

j
(h)big) fω

(
x+

s∑
j=1

y
(ωj)
2j Q

j
(h′)

)

= Eh,h′ E
y
(0)
1 ,y

(1)
1

y
(0)
2 y

(1)
2

∗∏
(ω,ω′)∈{0,1}2s

f(ω,ω′)

(
x+

s∑
j=1

y
(ωj)
1j Q

j
(h) +

s∑
j=1

y
(ω′

j)

1j Q
j
(h′)

)
,

where f(ω,ω′) = 1, unless (ω, ω′) = (ω, 0) or (ω, ω′) = (0, ω) (with ω ̸= 0), in which case f(ω,ω′) = fω.
Writing Q′(h, h′) = (Q

1
(h), . . . , Q

s
(h), Q

1
(h′), . . . , Q

s
(h′)) for the extended polynomial system, we

have that by box-norm Cauchy-Schwarz inequality

∣∣Ex

(
ν(d)(x)− 1

)
D2

Q(fω)(x)
∣∣ = ∣∣⟨ν(d) − 1, DQ′(fω,ω′)⟩

∣∣
≤ ∥ν(d) − 1∥□H,M (Q′)

∏
(ω,ω′ )̸=(0,0)

∥fω,ω′∥□H,M (Q′) = o(1).

Indeed the extended system Q′ is also in general position (as πi(Qj
(h) ̸= 0 for i ∈ [d], j ∈ [s]),

hence ∥ν(d) − 1∥□H,M (Q′) = o(1), while

∥fω,ω′∥□H,M (Q′) ≤ ∥ν(d)∥□H,M (Q′) + 1 ≪ 1,

by the polynomial forms condition. This proves the Proposition.

Corollary 4.2. Let f : X → R satisfying 0 ≤ f ≤ ν(d) and let ε > 0. Then there exists functions
0 ≤ g ≤ 2 and h, such that

f = g + h, and ∥h∥□H,M (Q) ≤ ε.
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Proof. Let 0 ≤ g ≤ 2 be given as Corollary ?? with ε′ = ε1/C . Then by (4.17) and Proposition 4.2
we have that

∥(f − g)∥□H,M (Q) ≤ ε+ o(1).

The Corollary follows by writing h = f − g.

5 Proof of Theorem 1.

The other main ingredient of obtaining polynomial patterns in relative dense subsets of the primes is
using an appropriate version of the polynomial extension of Szemerédi’s theorem due to Bergelson-
Leibman [2]. The version we use, given [19, 20], is as follows.

Theorem E. Let δ > 0, P = (P1, . . . , Pl), Pj ∈ Z[y], Pj(0) = 0 be a polynomial map, and let
V = {v1, . . . , vl} ⊆ Zd.

If g : X → [0, 1] is a function satisfying Ex∈Xg(x) ≥ δ, then one has

(5.1) ΛP,V (g, . . . , g) ≥ c(δ)− o(1),

where c(δ) > 0 is a constant, that depends only on δ, V and polynomial map P.

Now it is easy to prove our main result.

Proof of Theorem 1. Given A ⊆ Pd
N ′ with |A| ≥ δ |PN ′ |d we choose W , N = [N/W ],b and the

function fA as in (2.1)-2.2, then by (2.3)-(2.5) we have

Ex∈X fA(x) ≥ δ′, 0 ≤ fA(x) ≤ ν(d)(x),

with δ′ = c0δ/4. Then by Corollary 4.2 with ε > 0 sufficiently small with respect to c(δ′), we have
fA = g + h with ∥h∥□H,M (Q) ≤ ε, thus Corollary 3.1:

ΛP,V (fA, . . . , fA) ≥ ΛP,V (g, . . . , g)− εc − o(1) ≥ c(δ′)− εc − o(1) ≥ c(δ′)/2− o(1) > 0,

as long as L ≥ L(P, V ) and N ≥ N(P, V, δ) is sufficiently large.
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[4] B. Cook, Á. Magyar. Cook, Brian, and Akos Magyar, Constellations in Pd International
Mathematics Research Notices 2012.12 (2012): 2794-2816.
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Budapest, Reáltanoda u. 13–15, H-1053 Hungary

e-mail: pintz@renyi.hu

27


	Introduction
	The pseudo-random majorant and the polynomial forms condition.
	PET induction and the generalized von Neumann inequality.
	Dual functions and the main decomposition.
	Proof of Theorem 1.

